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Broken boost invariance in the Glasma via finite nuclei thickness
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We simulate the creation and evolution of non-boost-invariant Glasma in the early stages of heavy ion 
collisions within the color glass condensate framework. This is accomplished by extending the McLerran–
Venugopalan model to include a parameter for the Lorentz-contracted but finite width of the nucleus 
in the beam direction. We determine the rapidity profile of the Glasma energy density, which shows 
deviations from the boost-invariant result. Varying the parameters both broad and narrow profiles can 
be produced. We compare our results to experimental data from RHIC and find surprising agreement.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) 
and the Large Hadron Collider (LHC) provide insight into the prop-
erties of nuclear matter under extreme conditions. The evolution 
of the Quark–Gluon Plasma (QGP) that is created in such colli-
sions is well described by relativistic viscous hydrodynamics [1,2]. 
A first principles description of the initial state of heavy-ion colli-
sions is provided by the Color Glass Condensate (CGC) framework 
[3–5]. The CGC is a classical effective field theory for nuclear mat-
ter at ultrarelativistic energies. Models such as the IP-Glasma [6,
7] in combination with hydrodynamics are able to correctly repro-
duce azimuthal anisotropies and event-by-event multiplicity distri-
butions [8,9]. Furthermore, the CGC can explain long-range rapidity 
correlations like the ridge [10,11].

A Gaussian shaped rapidity profile of particle multiplicity can 
be found in experiments covering various energy ranges, from LHC 
[12] to RHIC Beam Energy Scan [13,14]. This shape is well ex-
plained by the Landau model [15] up to RHIC energies [13], which 
assumes full stopping of the colliding nuclei. The Landau model 
is in contrast to the Bjorken model [16] which relies on approxi-
mate boost invariance. A Gaussian profile has also been found in 
holographic calculations of colliding shock waves [17–19].

In its original formulation collisions in the CGC picture are 
assumed to be boost-invariant [20–23] and were thus only un-
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derstood as an approximation valid close to midrapidity. This ap-
proach implicitly assumes infinitely thin Lorentz-contracted nuclei 
and entails a classical, boost-invariant evolution of the Glasma at 
leading order.

Only at the next-to-leading order the boost invariance is bro-
ken by a change of the initial conditions through JIMWLK evo-
lution [24–27], and non-boost-invariant rapidity profiles can be 
obtained. Recently such rapidity dependencies have been found 
to agree reasonably well with experimental data where observ-
ables like charged particle multiplicities show a Gaussian ra-
pidity profile [28,29]. On the other hand it has been suggested 
that if one considers nuclei with finite extent in the beam di-
rection, deviations from boost invariance may arise already at 
the classical level [30]. In the case of proton–nucleus colli-
sions methods have been developed to systematically include fi-
nite width corrections of the nucleus [31–33]. However, so far 
there has been no consistent simulation of the subsequent three-
dimensional evolution for heavy-ion collisions even at the classical 
level.

In this letter, we show that Gaussian rapidity profiles of energy 
density can arise already from 3+1 dimensional purely classical 
CGC simulations, if incoming nuclei have a finite extent in the 
beam direction. As one would expect, the Gaussian profiles be-
come broader at higher collision energy. In principle, we can cover 
the wide range from very thin nuclei with almost boost-invariant 
behavior to thick nuclei at low collision energies and narrow Gaus-
sian profiles. We simulate the collision in the laboratory frame, see 
Fig. 1, which makes it necessary to include the propagating nuclei 
already before and during the collision.
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Fig. 1. A 3+1 dimensional colored particle-in-cell simulation of the collision of two 
thick sheets of relativistic nuclear matter. The simulation box covers a small part of 
the full transverse extent of the nuclei in the x, y plane. This figure shows a density 
plot of the energy density of both nuclei A and B, and the three-dimensional Glasma 
that is created in the collision. An animated version of this figure can be found at 
[34].

2. Theoretical framework

The nuclei in the CGC picture consist of hard partons that are 
surrounded by soft gluons. The hard partons can be described as 
classical color charges moving at the speed of light, while the soft 
gluons form a highly occupied coherent non-Abelian gauge field. 
The collision of two such infinitely thin condensates produces the 
Glasma whose evolution can be described classically by solving the 
Yang–Mills equations for early proper times. At finite nuclei width, 
the collision region is not pointlike anymore, and the nuclei, the 
collision, and the evolution of the Glasma can not be described 
separately and require one consistent simulation that covers all 
these steps.

A suitable numerical method was developed in our previ-
ous publication [35] based on the colored particle-in-cell method 
(CPIC) [36–39], which is a non-Abelian extension of the particle-
in-cell method for the simulation of Abelian plasmas [40,41]. In 
contrast to the traditional approach of simulating the Glasma, 
where the field equations are solved in the forward light-cone 
parametrized by proper time τ and space–time rapidity ηs , we 
describe the collision in the laboratory frame using the lab-frame 
time t and the longitudinal beam direction z. The most striking 
difference of this approach is the explicit inclusion of the nuclei 
in the simulation, whereas in a boost-invariant simulation the in-
formation about the nuclei and their color currents is completely 
encoded in the initial conditions at the boundary of the light-cone, 
i.e. τ = 0. To solve this problem numerically we simulate the con-
tinuous color charge densities of the nuclei with a large number 
of color-charged point-like particles, mimicking the dynamics of 
the continuous cloud of color charges on a lattice. This enables us 
to describe the full 3+1 dimensional collision and the subsequent 
evolution of the Glasma beyond the boost-invariant approximation. 
For a more detailed description we refer the reader to [35].

2.1. Initial conditions

The initial conditions in our simulation differ from the tradi-
tional approach as well. Instead of starting at τ = 0, our simulation 
begins before the collision with the nuclei well-separated in the 
longitudinal direction. Here we quickly review how to solve the 
Yang–Mills equations in the covariant gauge and the transforma-
tion to the temporal gauge in the laboratory frame for a single 

nucleus. We base our model of the initial state on the McLerran–
Venugopalan (MV) model [42,43], extended by a thickness param-
eter in longitudinal direction. The transverse charge density ρa(xT )

as a function of the transverse coordinate xT is a random variable 
following the usual gauge-invariant Gaussian probability functional 
W [ρ] with the two-point correlation function〈
ρa(xT )ρb(yT )

〉
= g2μ2δabδ(2)(xT − yT ), (1)

where μ is the MV model parameter controlling average color 
charge density and g is the Yang–Mills coupling constant. For a 
single nucleus moving in the positive z direction, we embed this 
two-dimensional charge density into the three-dimensional lab-
oratory frame via ρa(xT , x−) = f (x−)ρa(xT ) with a longitudinal 
profile function f (x−), where x± ≡ (t ± z) /

√
2 are the usual light-

cone coordinates. For the longitudinal profile we choose a Gaus-
sian

f (x−) = 1√
2π L

exp
(
−(x−)2/L2

)
, (2)

where we introduce the thickness parameter L. In the limit of 
L → 0 we have f (x−) ∝ δ(x−) and restore the boost-invariant 
limit of the original MV model. Note that this model explicitly 
neglects non-trivial longitudinal color structure [44]. The only non-
vanishing component of the light-like color current of the nucleus 
is then given by

J+
cov(xT , x−) = √

2 f (x−)ρa(xT )ta, (3)

where ta are the generators of the gauge group SU(N). The sub-
script “cov” denotes that this defines the color current in the 
covariant gauge ∂μ Aμ,a = 0. Using this ansatz we can solve the 
Yang–Mills equations

DμF μν = Jν (4)

in the covariant gauge by finding a solution to the two-dimensional 
Poisson equation

−	T A+(xT , x−) = J+
cov(xT , x−), (5)

which is solved by

φa(xT ) =
�∫

0

d2kT

(2π)2

ρ̃a(kT )

k2
T + m2

e−ikT ·xT , (6)

A+(xT , x−) = √
2 f (x−)φa(xT )ta, (7)

where ρ̃a(kT ) is the Fourier transform of ρa(xT ). We introduced 
an infrared regulator m and an ultraviolet cutoff �, since the MV 
model is both infrared and UV divergent. The regularization in (6)
should be read as a modification of the charge densities ρa(xT )

while the field equations remain unchanged.
Our numerical method requires the gauge fields to satisfy the 

temporal gauge condition Aa
0 = 0. Switching to this gauge from the 

covariant gauge renders the fields purely transverse. The transverse 
field components and the color current are given by

Ai(xT , x−) = i

g
V (xT , x−)∂i V †(xT , x−), (8)

J+(xT , x−) = V (xT , x−) J+
cov(xT , x−)V †(xT , x−), (9)

with the temporal Wilson line

V (xT , x−) = T exp

(
− ig

t∫
−∞

dt′ f (x′ −)φ(xT )

)
. (10)



Download	English	Version:

https://daneshyari.com/en/article/5494980

Download	Persian	Version:

https://daneshyari.com/article/5494980

Daneshyari.com

https://daneshyari.com/en/article/5494980
https://daneshyari.com/article/5494980
https://daneshyari.com/

