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There is a growing evidence that due to quantum gravity effects the effective spacetime dimensionality 
might change in the UV. In this letter we investigate this hypothesis by using quantum fields to derive 
the UV behaviour of the static, two point sources potential. We mimic quantum gravity effects by using 
non-commutative fields associated to a Lie group momentum space with a Planck mass curvature scale. 
We find that the static potential becomes finite in the short-distance limit. This indicates that quantum 
gravity effects lead to a dimensional reduction in the UV or, alternatively, that point-like sources are 
effectively smoothed out by the Planck scale features of the non-commutative quantum fields.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Recent years have witnessed a surge of interest in the possibil-
ity of probing the structure of spacetime in the regime in which 
quantum gravity effects should become relevant by studying the 
scaling behaviour of the spectral dimension. This way of characteriz-
ing the dimensionality of a given space is based on a fictitious dif-
fusion process determined, via the heat equation, by the Laplacian 
associated to the specific quantum gravity model under considera-
tion [1]. The picture that has emerged, starting with the framework 
of causal dynamical triangulations [2] and subsequently in a vari-
ety of approaches to quantum gravity (see e.g. [3–12]), is that of a 
dimensional reduction at very short, Planckian, scales.

The use of the spectral dimension to explore the short scale 
structure of spacetime has two drawbacks: it relies on a artificial 
diffusion process characterized by an unphysical time parameter 
and can be defined only on Euclidean spaces thus applying only to 
Wick-rotated versions of the models at stance. This has prompted 
alternative proposals in which the change of dimensionality at 
short scales is described in terms of more intuitive or operationally 
better defined notions. In [13], for example, the authors adopted 
certain thermodynamic quantities to characterize the dimensional-
ity of space-time while in [14] the change of dimensionality was 
studied in terms of the emission rate perceived by an accelerated 
detector. Along these lines a particularly intriguing observation 
[15] suggests that in models of deformed kinematics at the Planck 
scale, based on deformed, non-linear, energy–momentum disper-
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sion relations, the running of dimensionality at small scales can be 
actually captured by a change of the more familiar Hausdorff di-
mension1 of momentum space in the UV. As noticed in [15] such 
UV behaviour can be modelled by a non-trivial integration mea-
sure in four-momentum space. This feature is shared by models of 
deformed relativistic kinematics based on a Lie group momentum 
space where the deformed integration measure is determined by 
the curved geometry of the Lie group manifold. In the most stud-
ied examples in the literature such deformed kinematics is related 
to quantum group deformations of relativistic symmetries and in 
a configuration space picture to a non-commutative space-time as 
we briefly review below.

In this letter it is our aim to further explore the short-distance 
structure of space-time emerging in these models by using the as-
sociated non-commutative quantum fields as a probe. We study 
the behaviour of the potential energy between two point-like 
sources subject to the interaction mediated by a real scalar field 
living on the non-trivial momentum space. A central tool in our 
analysis will be the generating functional of the free quantum 
scalar field coupled to the sources.

Quite strikingly we obtain that, unlike for ordinary local quan-
tum fields, this potential energy does not diverge in the zero-
distance limit. This indicates that Planck scale effects encoded in 
the non-abelian group manifold structure of momentum space in-
troduce an effective dimensional reduction in the UV. We show 

1 The Hausdorff dimension of momentum space in [15] is given by the scaling of 
the volume of a ball of radius R , e.g. in D-dimensional Euclidean space V ∼ R D and 
the Hausdorff dimension is D .
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that such effect does not depend on the choice of kinetic opera-
tor of the theory (as it is the case for the analysis of the spectral 
dimension of these models) and that the UV finiteness of the po-
tential is associated to an effective smearing of the point sources 
as “seen” by the non-commutative interaction carrier field.

The basic feature of the model of deformed kinematics we will 
be considering is that momentum space, rather than being ordi-
nary flat Minkowski space, is described by the non-abelian Lie 
group AN3, a subgroup of the five dimensional Lorentz group 
S O (4, 1) (see [22] for details). As a manifold this group is a “half” 
of four-dimensional de Sitter space whose cosmological constant 
κ2 is representative of an energy scale which can be identified 
with the Planck energy. The AN3 group can be obtained by expo-
nentiating the an3 Lie algebra

[X0, Xa] = i

κ
Xa , [Xa, Xb] = 0 ; a = 1, . . . ,3 (1)

known in the literature as κ-Minkowski non-commutative space-
time. Notice that in order for the generators of the Lie algebra 
to carry dimension of length, one has to introduce the constant 
κ with dimension of energy. This sets the UV scale associated to 
the curvature 1/κ2 of the momentum group-manifold (in the limit 
κ → ∞ the algebra of coordinates becomes abelian and one recov-
ers the usual flat momentum space).

One of the key features of field theories defined on the AN3
four-momentum space is that ordinary plane waves are replaced 
by group elements i.e. exponentials of the non-commuting algebra 
elements (1). For instance, a choice of normal ordering for the plane 
waves can be associated to a given parametrization of the group 
element [18]. In particular for “time-to-the-right” ordered plane 
waves

ek = e−i�k· �X eik0 X0 , (2)

the real parameters k0, �k are coordinates on the AN3 group mo-
mentum space and are known as “bicrossproduct” [19] or “horo-
spherical” coordinates [20].

There is yet another important coordinate system on the 
AN3 momentum space, describing its embedding into the five-
dimensional Minkowski space. Such “embedding coordinates” are 
related to the bicrossproduct coordinates by the following coordi-
nate transformation

p0 = κ sinh
(

k0
κ

)
+ 1

2κ
ek0/κ�k2 ,

�p = ek0/κ�k ,

p4 = κ cosh
(

k0
κ

)
− 1

2κ
ek0/κ�k2 . (3)

One can easily check that the embedding coordinates above satisfy 
the constraints

−p2
0 + �p2 + p2

4 = κ2 , p0 + p4 > 0 , (4)

which define the manifold of the AN3 group as submanifold of 
four-dimensional de Sitter space. Notice that taking the flat limit 
κ → +∞ one has p0 → k0, �p → �k but p4 → +∞ and therefore 
p4 can be identified as the “auxiliary” momentum in embedding 
coordinates to be considered as a function of energy p0 and spatial 
momenta �p via (4).

The kinematical and relativistic properties of the AN3 group 
valued momenta, action of Lorentz transformations and compo-
sition of momenta, are described by a Hopf algebra deformation 
of the Poincaré algebra known as κ-Poincaré [16,17,19]. For the 
purposes of the present work it will be sufficient to describe the 
action of translation generators on plane waves and the definition 
of the (deformed) Casimir mass invariant. Translation generators, 

as in the ordinary case, act on plane waves as derivatives but in 
this case the Leibniz rule for acting on products of plane waves 
will be non-linear and non-symmetric, a typical feature of symme-
try generators belonging to a non-trivial Hopf algebra. On a single 
plane wave ek = e−i�k· �X eik0 X0 the translation generators Pμ act ac-
cording to

Pμ ek = pμ(k0, �k) ek , (5)

with eigenvalues pμ(k0, �k) given by the first four entries of (3). 
This action is associated to a type of non-commutative differential 
calculus (the interested reader can consult [21] and [22] for full 
details on this choice of calculus). Let us just mention in pass-
ing that covariance requires such differential calculus to be five-
dimensional with Pμ ≡ ∂̂μ acting on plane waves as in (5) and the 
∂̂4, the additional derivative, as ∂̂4 ek = (1 − p4(k0, �k)) ek . There is a 
natural d’Alembertian operator associated to this five-dimensional 
calculus which, in terms of the eigenvalues of the translation op-
erators described above, realizes the invariant

C(p) = p2
0 − �p 2 (6)

which formally corresponds to the ordinary relativistic mass 
Casimir. Such invariant has an intuitive geometrical meaning in 
terms of sub-manifolds of de Sitter momentum space spanned by 
hyper-surfaces of constant auxiliary momentum p4.

A free quantum scalar field defined on the Lie group AN3
can be constructed in a rather straightforward way in terms of 
a path integral [23]. Indeed path integrals for fields defined on 
(several copies) of a Lie group are well known and have been 
widely studied in the quantum gravity literature under the name 
of group field theories (see [24] for a discussion oriented towards 
non-commutative models and relevant references). From this point 
of view the “deformed” quantum fields we are considering here 
can be seen as a one-dimensional group field theory with a non-
trivial kinetic term represented by the Casimir C(p).

As mentioned above, in order to explore the dimensionality of 
space-time as probed by a non-commutative field, we will study 
the interaction between two point sources mediated by the ex-
change of a massless scalar particle. From a path integral point 
of view this information is encoded in the partition function of 
the scalar field coupled to external sources which, as in ordi-
nary QFT, represents the vacuum-to-vacuum transition amplitude, 
Z ≡ 〈0|e−iH T |0〉. Such partition function can be computed by func-
tional integration of the action for the field and sources. Our start-
ing point will be the non-commutative partition function written 
in terms of the star product � associated with the choice of the 
non-commutative plane waves (2), introduced in [22] and dis-
cussed in details in [25],

Z [ J ] = 1

Z [0]
∫
Dφ exp

(
i

2

∫
d4x (∂μφ(x) � ∂μφ(x) + φ(x) � J (x)

+ j(x) � φ(x))

)
, (7)

where ∂μ are derivatives determined by the covariant calculus dis-
cussed above. It turns out that the expression above can be recast 
in terms of ordinary derivatives and products in a non-local form 
using the relation2

ψ � φ ≡ ψ

√
1 − �

κ2
φ + total derivative , (8)

2 It should be noted that, as discussed in [25], this simplification is possible only 
in the case of bilinear expressions and does not apply to higher order polynomials 
in fields.
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