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The Newton limit of gravity is studied in the presence of Lorentz-violating gravitational operators of ar-
bitrary mass dimension. The linearized modified Einstein equations are obtained and the perturbative 
solutions are constructed and characterized. We develop a formalism for data analysis in laboratory ex-
periments testing gravity at short range and demonstrate that these tests provide unique sensitivity to 
deviations from local Lorentz invariance.
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General relativity (GR) is founded on the Einstein equivalence 
principle, which incorporates local Lorentz invariance, local posi-
tion invariance, and the weak equivalence principle. GR is known 
to provide an excellent description of classical gravity over a 
broad range of length scales. However, modifications of the Ein-
stein equivalence principle associated with local Lorentz violation 
may arise in an underlying framework compatible with quantum 
physics such as string theory [1]. Searches for Lorentz violation in 
gravitational experiments may thus yield clues about the nature of 
physics beyond GR [2,3].

An important class of precision tests of gravity involves ex-
periments testing its properties at short distances below about a 
millimeter [4]. Remarkably, even some aspects of the conventional 
Newton force await verification on this scale, and the presence 
of larger forces falling as an inverse cubic, quartic, or faster is 
still compatible with existing experimental data. In this work, we 
use a comprehensive description of possible deviations from local 
Lorentz invariance in the pure-gravity sector to study laboratory 
tests of gravity at short range and to characterize their sensitiv-
ity vis-à-vis other types of investigations. Our results also provide 
a formalism for the analysis of data in short-range experiments.

One approach to studying Lorentz violation in gravity is to 
build a specific model and explore its properties. However, since 
no compelling signals for Lorentz violation have been uncovered 
to date, guidance for a broad-based experimental search is per-
haps best obtained by developing instead a framework allowing all 
types of Lorentz violation while including accepted gravitational 
physics. Effective field theory is one powerful technique along 
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these lines, as it permits a general description of emergent effects 
from an unobservable scale [5].

In the context of gravity, the effective field theory for Lorentz 
violation [6] offers a model-independent framework for explor-
ing observables for Lorentz violation. In the pure-gravity sec-
tor in Riemann geometry, the action of this theory contains the 
Einstein–Hilbert action and a cosmological constant along with all 
coordinate-independent terms involving gravitational-field opera-
tors. The pure-gravity action is a subset of the general effective 
field theory describing matter and gravity known as the gravita-
tional Standard-Model Extension (SME). A term violating Lorentz 
invariance in the action consists of a Lorentz-violating operator 
contracted with a coefficient for Lorentz violation that controls the 
magnitude of the resulting physical effects. It is often convenient to 
classify the operators according to their mass dimension d in nat-
ural units, with operators having larger d likely to induce smaller 
physical effects at low energies due to a greater suppression by 
powers of the Newton gravitational constant or, equivalently, by 
inverse powers of the Planck mass.

To date, comparatively few of the coefficients for Lorentz vio-
lation in the pure-gravity sector have been constrained [2]. Most 
remain unexplored, and some could even involve large Lorentz 
violation that has escaped detection so far due to “countershad-
ing” by feeble couplings [7]. For d = 4, certain Lorentz-violating 
operators generate noncentral orientation-dependent corrections 
to the inverse-square law. These have been the subject of both 
theoretical work [8–15] and observation [16–25], and two-sided 
constraints at various levels down to parts in 1011 have been ob-
tained on the nine corresponding coefficients for Lorentz violation. 
At d = 6, many Lorentz-violating operators produce instead cor-
rections to Newton’s law involving an inverse quartic force [26]. 
A variety of short-range experiments [27–29] have attained sensi-
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tivities of order 10−9 m2 to the 14 combinations of pure-gravity 
coefficients controlling this type of Lorentz violation in the nonrel-
ativistic limit, and there are excellent prospects for improved sen-
sitivity [30]. Constraints on some operators of dimensions d ≤ 10
have also been reported, based on the nonobservation of gravita-
tional Čerenkov radiation [31,32] and from data on gravitational 
waves [33], while proposals for other measurements exist [34–37].

To provide a comprehensive discussion of possible effects of 
Lorentz violation in the nonrelativistic limit relevant for short-
range tests of gravity, we can expand the metric gμν around 
the Minkowski spacetime metric ημν and work with the general 
gauge-invariant and Lorentz-violating Lagrange density L, restrict-
ing attention to terms quadratic in the dimensionless metric fluc-
tuation hμν ≡ gμν −ημν and neglecting the cosmological constant. 
In this limit, the Einstein–Hilbert term takes the form

L0 = 1
4εμρακενσβληκλhμν∂α∂βhρσ . (1)

Incorporating both Lorentz-violating and Lorentz-invariant opera-
tors of arbitrary mass dimension d, the Lagrange density L can be 
written as [33]

L = L0 + 1
4 hμν(ŝμρνσ + q̂μρνσ + k̂μνρσ )hρσ . (2)

Here, the derivative operators ŝμρνσ , q̂μρνσ , and k̂μρνσ can be 
expanded as sums of constant cartesian coefficients s(d)μ1...μd+2 , 
q(d)μ1...μd+2 , k(d)μ1...μd+2 for Lorentz violation contracted with fac-
tors of derivatives ∂μ ,

ŝμρνσ =
∑

d≥4, even

s(d)μρ◦νσ◦d−3
,

q̂μρνσ =
∑

d≥5, odd

q(d)μρ◦ν◦σ◦d−4
,

k̂μνρσ =
∑

d≥6, even

k(d)μ◦ν◦ρ◦σ◦d−5
, (3)

where a circle index ◦ denotes an index contracted into a deriva-
tive, and where n-fold contractions are written as ◦n . The operator 
ŝμρνσ is antisymmetric in both the first and second pairs of in-
dices, while q̂μρνσ is antisymmetric in the first pair and symmetric 
in the second, and k̂μνρσ is totally symmetric. Contracting any one 
of these operators with a derivative produces zero. Note that the 
d = 4 piece of ŝμρνσ includes a term of the same form as L0 with 
an overall scaling factor, which can be set to zero if desired.

In studying the nonrelativistic limit, it is convenient to work 
with the trace-reversed metric fluctuation

hμν = rμν
ρσ hρσ , (4)

where

rμν
ρσ = 1

2 (ημ
ρην

σ + ημ
σην

ρ − ημνη
ρσ ) (5)

is the trace-reverse operator. The modified linearized Einstein ten-
sor obtained by the variation of L can be written as the sum of 
the usual linearized Einstein tensor Gμν

L and a correction δGμν
L ,

Gμν
L + δGμν

L = 1
2

(
∂ρ∂(μhν)ρ − ημν∂ρ∂σ hρσ − ∂2hμν

) + δGμν
L

= − 1
2 ∂2hμν + δGμν

L , (6)

where in the last line we adopt the Hilbert gauge, ∂μhμν = 0. The 
correction δGμν

L can be expressed as the action of a combination 
of derivative operators on hμν ,

δGμν
L = δMμνρσ hρσ , (7)

where

δMμνρσ = δMμνκλrκλ
ρσ (8)

with

δMμνρσ = − 1
4 (ŝμρνσ + ŝμσνρ) − 1

2 k̂μνρσ

− 1
8 (q̂μρνσ + q̂νρμσ + q̂μσνρ + q̂νσμρ) (9)

being expressed in terms of the operators appearing in the La-
grange density (2).

The modified linearized Einstein equation takes the form

Gμν
L + δGμν

L = 8πG N T μν, (10)

where T μν is the energy–momentum tensor. The trace-reversed 
metric fluctuation can be expanded as hμν = hμν

0 + δhμν , where 
hμν

0 is a conventional Lorentz-invariant solution and δhμν is the 
perturbation arising from the correction δGμν

L . Solving Eq. (10) at 
first order then reduces to solving the coupled set of equations

∂2hμν
0 = −16πG N T μν, ∂2δhμν = 2δMμν

ρσ hρσ
0 . (11)

In the static limit, the zeroth-order solution satisfies the usual 
Poisson equation ∇2hμν

0 = −16πG N T μν and takes the standard 
form

hμν
0 (x) = 4G N

∫
d3x′ T μν(x′)

|x − x′| , (12)

while the first-order solution is found to be

δhμν = 4G N δMμν
ρσ

∫
d3x′ |x − x′| T ρσ (x′). (13)

Note that this solution is compatible with the Hilbert gauge be-
cause ∂μδMμν

ρσ = 0.
For applications to short-range experiments, which involve non-

relativistic sources, T μν is well approximated by its energy-density 
component T 00 = ρ(x), where ρ(x) is the local mass density. We 
disregard here possible Lorentz-violating modifications to the dis-
persion relations for various SME matter species [11,38], which 
generate geodesics on Finsler spacetimes [39,40]. Also, the com-
ponents of the metric fluctuation can be expressed in terms of a 
modified gravitational potential U (x) producing a modified gravi-
tational acceleration g(x) = ∇U ,

h00 = 1
2 h00 = 2U , h jk = 1

2 h00δ jk = 2Uδ jk. (14)

Expanding U (x) = U0(x) + δU (x) as the sum of the usual gravita-
tional potential U0 and the perturbation δU then yields

U0(x) = G N

∫
d3x′ ρ(x′)

|x − x′| , (15)

as expected. The Lorentz-violating modification to the potential is 
given by

δU (x) = 1
2 δh00 = 1

2 r00μνδhμν

= 2G NδM0000

∫
d3x′ |x − x′|ρ(x′), (16)

where for convenience we define the double trace-reversed opera-
tor

δM0000 = r00μνr00ρσ δMμνρσ = 1
4 δMρρσσ

= − 1
8 (ŝρσρσ + k̂ρρσσ ). (17)

Note the noncovariant traces.
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