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For field theories in one time and one space dimensions we propose an efficient method to compute 
the vacuum polarization energy of static field configurations that do not allow a decomposition into 
symmetric and anti-symmetric channels. The method also applies to scenarios in which the masses of the 
quantum fluctuations at positive and negative spatial infinity are different. As an example we compute 
the vacuum polarization energy of the kink soliton in the φ6 model. We link the dependence of this 
energy on the position of the soliton to the different masses.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Vacuum polarization energies (VPE) sum the shifts of zero point 
energies of quantum fluctuations that interact with a (classical) 
background potential. Spectral methods [1] have been very suc-
cessful in computing VPEs particularly for background configura-
tions with sufficient symmetry to facilitate a partial wave decom-
position for the quantum fluctuations. In this approach scattering 
data parameterize Green functions from which the VPE is deter-
mined. In particular the imaginary part of the two-point Green 
function at coincident points, i.e. the density of states, is related 
to the phase shift of potential scattering [2]. Among other features, 
the success of the spectral methods draws from the direct imple-
mentation of background independent renormalization conditions 
by identifying the Born series for the scattering data with the ex-
pansion of the VPE in the strength of the potential. The ultra-violet 
divergences are contained in the latter and can be re-expressed 
as regularized Feynman diagrams. In renormalizable theories the 
divergences are balanced by counterterms whose coefficients are 
fully determined in the perturbative sector of the quantum theory 
in which the potential is zero.

For field theories in one space dimension the partial wave de-
composition separates channels that are even or odd under spa-
tial reflection. We propose a very efficient method, that in fact is 
based on the spectral methods, to numerically compute the VPE 
for configurations that evade a decomposition into parity even and 
odd channels. This is particularly interesting for field theories that 
contain classical soliton solutions connecting vacua in which the 

E-mail address: weigel@sun.ac.za.

masses of the quantum fluctuations differ. A prime example is the 
φ6 model. For this model some analytical results, in particular the 
scattering data for the quantum fluctuations, have been discussed 
a while ago in Refs. [3,4]. However, a full calculation of the VPE 
has not yet been reported. A different approach, based on the heat 
kernel expansion with ζ -function regularization [5,6] has already 
been applied to this model [7].1 This approach requires an intricate 
formalism on top of which approximations (truncation of the ex-
pansion) are required. We will see that they become less accurate 
as the background becomes sharper. We also note that a similar 
problem involving distinct vacua occurs in scalar electrodynamics 
when computing the quantum tension of domain walls [11].

We briefly review the setting of the one-dimensional prob-
lem. The dynamics of the field φ = φ(t, x) is governed by the 
Lagrangian

L = 1

2
∂μφ ∂μφ − U (φ) . (1)

The self-interaction potential U (φ) typically has distinct minima 
and there may exist several static soliton solutions that interlink 
between two such minima as x → ±∞. We pick a specific soliton, 
say φ0(x) and consider small fluctuations about it

φ(t, x) = φ0(x) + η(t, x) . (2)

Up to linear order, the field equation turns into a Klein–Gordon 
type equation[
∂μ∂μ + V (x)

]
η(t, x) = 0 , (3)

1 See Refs. [8–10] for reviews of heat kernel and ζ -function methods.
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where V (x) = U ′′(φ0(x)) is the background potential generated by 
the soliton. At spatial infinity V (x) approaches a constant to be 
identified as the mass (squared) of the quantum fluctuations. In 
general, as e.g. for the φ6 model with U (φ) = λ

2 φ2(φ2 − �2)2, we 
allow limx→−∞ V (x) �= limx→∞ V (x). This gives rise to different 
types of quantum fluctuations. While φ0 is classical, the fluctua-
tions are subject to canonical quantization so that the above har-
monic approximation yields the leading quantum correction. As a 
consequence of the interaction with the background the zero point 
energies of all modes change and the sum of all these changes is 
the VPE, cf. Sec. 3.

2. Phase shifts

As will be discussed in Sec. 3 the sum of the scattering 
(eigen)phase shifts is essential to compute the VPE from spec-
tral methods. We extract scattering data from the stationary wave 
equation, η(t, x) → e−iEtη(x),

E2η(x) =
[
−∂2

x + V (x)
]
η(x) . (4)

According to the above described scenario we define m2
L =

limx→−∞ V (x) and m2
R = limx→∞ V (x) and take the convention 

mL ≤ mR , otherwise we just relabel x → −x. We introduce a dis-
continuous pseudo potential

V p(x) = V (x) − m2
L +

(
m2

L − m2
R

)
�(xm) (5)

with �(x) being the step function. Any finite value may be chosen 
for the matching point xm . In contrast to V (x), V p(x) → 0 as x →
±∞. Then the stationary wave equation, (4) reads

[
−∂2

x + V p(x)
]
η(x) =

{
k2η(x) , for x ≤ xm

q2η(x) , for x ≥ xm
(6)

where k =
√

E2 − m2
L and q =

√
E2 − m2

R =
√

k2 + m2
L − m2

R . We 
emphasize that solving Eq. (6) is equivalent to solving Eq. (4). 
We factorize coefficient functions A(x) and B(x) appropriate for 
the scattering problem via η(x) = A(x)eikx for x ≤ xm and η(x) =
B(x)eiqx for x ≥ xm:

A′′(x) = −2ikA′(x) + V p(x)A(x) and

B ′′(x) = −2iqB ′(x) + V p(x)B(x) , (7)

where a prime denotes a derivative with respect to x. In ap-
pendix B of Ref. [2] related functions, g±(x) were introduced to pa-
rameterize the Jost solutions for imaginary momenta. The bound-
ary conditions A(−∞) = B(∞) = 1 and A′(−∞) = B ′(∞) = 0
yield the scattering matrix by matching the solutions at x = xm . 
Above threshold, k ≥

√
m2

R − m2
L so that q is real, the scattering 

matrix is

S(k) =
(

e−iqxm 0
0 eikxm

)(
B −A∗

iqB + B ′ ikA∗ − A′∗
)−1

×
(

A −B∗
ikA + A′ iqB∗ − B ′∗

)(
eikxm 0

0 e−iqxm

)
, (8)

where A = A(xm), etc. are the coefficient functions at the match-
ing point. Conventions are that the diagonal and off-diagonal ele-
ments of S contain the transmission and reflections coefficients, 
respectively [12]. Below threshold we parameterize for x ≥ xm: 
η(x) = B(x)e−κx with κ =

√
m2

R − m2
L − k2 ≥ 0 replacing −iq in 

Eq. (7) so that B(x) is real. Then

S(k) = − A
(

B ′/B − κ − ik
)− A′

A∗ (B ′/B − κ + ik) − A′∗ e2ikxm (9)

is the reflection coefficient. In both cases we compute the sum of 
the eigenphase shifts δ(k) = −(i/2)lndetS(k). The negative sign on 
the right hand side of Eq. (9) suggests that (in most cases) δ(0)

is an odd multiple of π
2 in agreement with Levinson’s theorem. 

When the scattering problem diagonalizes into symmetric (S) and 
anti-symmetric (A) channels and taking δ(k) → 0 as k → ∞, the 
theorem states that δS (0) = π(ns − 1

2 ) and δA(0) = πnA , where 
nS and nA count the bound states in the two channels [13,14]. 
The additional −π/2 in the symmetric channel arises because in 
that channel it is the derivative of the wave function that van-
ishes at x = 0, rather than the wave function itself. For scattering 
off a background that does not decompose into these channels 
we have δ(0) = π(n − 1

2 ), where n is the total number of bound 
states [12]. There are particular cases in which δ(0) is indeed an 
integer multiple of π . Examples are reflectionless potentials and 
the case V (x) ≡ 0. Then there exist threshold states contributing 1

2
to n.

The step potential of hight m2
R − m2

L centered at x = xm cor-
responds to V p ≡ 0. In this case the wave equation is solved by 
A(x) = B(x) ≡ 1 and

δstep(k) =

⎧⎪⎪⎨
⎪⎪⎩

(k − q)xm , for k ≥
√

m2
R − m2

L

kxm − arctan

(√
m2

R−m2
L−k2

k

)
, for k ≤

√
m2

R − m2
L

(10)

agrees with textbook results.

3. Vacuum polarization energy

Formally the VPE is the sum of the shifts of the zero point en-
ergies due to the interaction with a background potential that is 
generated by the field configuration φ0,

Evac[φ0] = 1

2

∑
j

(
E j[φ0] − E(0)

j

)
+ Ect[φ0] . (11)

Regularization for this logarithmically divergent sum is understood. 
When combined with the counterterms, Ect a unique finite re-
sult arises after removing regularization. Typically there are two 
contributions in the sum of Eq. (11): (i) explicit bound and (ii) 
continuous scattering states. The latter part is obtained as an in-
tegral over one particle energies weighted by the change in the 
density of states, �ρ(k). We find the density ρ(k) = dN(k)

dk for 
scattering modes incident from negative infinity by discretizing 
kL + δ(k) = N(k)π where δ(k) is phase shift. Adopting the con-
tinuum limit L → ∞ and subtracting the result from the non-
interacting case yields the Krein formula [15],

�ρ(k) = ρ(k) − ρ(0)(k) = 1

π

d

dk
δ(k) . (12)

The situation for modes incident from positive infinity is not as 
straightforward. Here we count levels (above threshold) by setting 
qL + δ(k) = N(k)π . Since k is the label for the free states we get 
an additional contribution to the change in the density of states

L

π

d

dk
[q − k] = L

π

⎡
⎢⎣ k√

k2 + m2
L − m2

R

− 1

⎤
⎥⎦

= L

π

⎡
⎢⎣
√

E2 − m2
L√

E2 − m2
R

− 1

⎤
⎥⎦ . (13)
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