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A gauge fixing condition is presented here for non-Abelian gauge theory on the manifold R ⊗ S1 ⊗ S1 ⊗ S1. 
It is proved that the new gauge fixing condition is continuous and free from the Gribov ambiguity. While 
perturbative calculations based on the new gauge condition behave like those based on the axial gauge 
in ultraviolet region, infrared behaviours of the perturbative series under the new gauge fixing condition 
are quite nontrivial. The new gauge condition, which reads n · ∂n · A = 0, may not satisfy the boundary 
condition Aμ(∞) = 0 as required by conventional perturbative calculations for gauge theories on the 
manifold S4. However, such contradiction is not harmful for the theory considered here.
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1. Introduction

Gauge fixing procedure of non-Abelian gauge theory is a non-
trivial issue and hampered by some ambiguities [1,2]. The conven-
tional Faddeev–Popov quantization procedure [3] is based on the 
equation:∫

[Dα(x)]det(
δ(G(A))

δα
)δ(G(A)) = 1, (1)

where α(x) represents the parameter of gauge transformation, 
G(A) represents the gauge fixing function and G(A) = ∂ A for the 
Landau gauge. In [1], the author shows that the Landau gauge 
∂ · A = 0 is not a good gauge fixing condition for non-Abelian gauge 
theories as it does not intersect with each gauge orbit exactly once. 
Such ambiguity is termed as Gribov ambiguity in literature. In [2], 
it was proved that there is no continuous gauge fixing condition 
which is free from the Gribov ambiguity for non-Abelian gauge 
theory on 3-sphere (S3) and 4-sphere (S4) once the gauge group 
is compact.

The Gribov ambiguity is related to the zero eigenvalues (with 
nontrivial eigenvectors) of the Faddeev–Popov operator [1,4–6]. It 
seems natural to work in the so-called Gribov region [1,6], in 
which the Faddeev–Popov operator is positive definite. The Gri-
bov region is convex and intersects with each gauge orbit at least 
once [7,8]. Integral region of the gauge potential is restricted to the 

* Corresponding author.
E-mail address: zhougl@itp.ac.cn (G.-L. Zhou).

Gribov region through the no pole condition [1,5], which means 
that nontrivial poles of propagators of ghosts should vanish in the 
Gribov region. Such restriction can also be realized through the 
Gribov–Zwanziger (GZ) action [9–11]. Equivalence between these 
two methods is proved in [12]. The Gribov region method is ex-
tended to general Rξ gauges in [13] through the field dependent 
BRST transformation [14,15]. The method can also be extended to 
the maximal Abelian gauge (see, e.g. Refs. [16–18]).

Although researches based on the GZ action are interesting and 
fruitful (see, e.g. Refs. [19–23]). There is still Gribov ambiguity even 
if one works in the Gribov region. A possible solution to the Gribov 
problem is to work in the absolute Landau gauge [6,4], which is the 
set of the absolute minima of the functional∫

d4xtr[AU
μ(x)AU

μ(x)], (2)

where U represents an arbitrary gauge transformation. It is, how-
ever, difficult to perform analytical calculations in this gauge. An 
alternative way is to average over Gribov copies as in [24,25], 
which avoids the Neuberger zero problem of the standard Fad-
deev–Popov quantization procedure. One may also take an extra 
constraint introduced in [26,27] that eliminates infinitesimal Gri-
bov copies without the geometric approach.

For an algebraic gauge condition like the axial gauge n · A = 0, 
the degeneracy is independent of the gauge potential. It seems that 
calculations in such gauge are not affected by the Gribov ambi-
guity. However, such gauge condition is not continuous for gauge 
theories on the manifold S4. To see this, we consider the equa-
tion:
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Un · AU † + i

g
Un · ∂U † = 0 ⇒

U †(x) ∝ P exp(ig

0∫
−∞

n · A(x + snμ)). (3)

It is impossible to choose the proportional function in above equa-
tion so that U (x) takes unique value at infinity. This is in contra-
diction with the continuity of gauge transformations as the infinity 
is an ordinary point on S4. There is another famous algebraic gauge 
termed as the space-like planar gauge [28–31], in which the gauge 
fixing term reads

Lfix ≡ − 1

n2
tr[n · A∂2n · A], (4)

where nμ is a space like vector. The space-like planar gauge is 
free from the Gribov ambiguity [30] and not continuous for gauge 
theories on S4.

In this paper, we consider non-Abelian gauge theory on the 
3 + 1 dimensional manifold R ⊗ S1 ⊗ S1 ⊗ S1. Topological properties 
of the manifold are interesting and may be related to confinement 
of quarks as displayed in [32]. Gauge potentials on the manifold 
R ⊗ S1 ⊗ S1 ⊗ S1 satisfy the periodic boundary conditions,

Aμ(t, x1 + L1, x2, x3) = Aμ(t, x1, x2, x3)

Aμ(t, x1, x2 + L2, x3) = Aμ(t, x1, x2, x3)

Aμ(t, x1, x2, x3 + L3) = Aμ(t, x1, x2, x3), (5)

where Li (i = 1, 2, 3) are large constants. It is hard to maintain 
Lorentz invariance in theories on the manifold. We do not consider 
such defect here. We will show that the gauge condition

n · ∂n · A = 0 (6)

is continuous and free from the Gribov ambiguity for gauge the-
ories on the manifold R ⊗ S1 ⊗ S1 ⊗ S1, where nμ represents 
directional vectors along xi -axis (i = 1, 2, 3). We can rewrite the 
gauge condition in momentum space, which reads,

n · A(k) = 0 (for n · k �= 0). (7)

We see that the gauge fixing condition is equivalent to the axial 
gauge for n · k �= 0.

The paper is organized as follows. In Sec. 2, we describe gauge 
theory on R ⊗ S1 ⊗ S1 ⊗ S1 briefly. In Sec. 3, we consider non-
Abelian gauge theory on R ⊗ S1 ⊗ S1 ⊗ S1 and present the proof 
that the gauge condition (6) is continuous and free from the Gri-
bov ambiguity. In Sec. 4, we discuss propagators of gluons under 
the new gauge fixing condition. Our conclusions are presented in 
Sec. 5.

2. Gauge theories on R ⊗ S1 ⊗ S1 ⊗ S1

In this section, we describe gauge theories on the manifold R ⊗
S1 ⊗ S1 ⊗ S1. The manifold R ⊗ S1 ⊗ S1 ⊗ S1 can be obtained from 
the Minkowski space through the identification

(t, x1, x2, x3) ∼ (t, x1 + L1, x2, x3) ∼ (t, x1, x2 + L2, x3)

∼ (t, x1, x2, x3 + L3), (8)

where Li (i = 1, 2, 3) are large constants. We take the following 
periodic boundary conditions,

Aμ(t, x1 + L1, x2, x3) = Aμ(t, x1, x2, x3)

Aμ(t, x1, x2 + L2, x3) = Aμ(t, x1, x2, x3)

Aμ(t, x1, x2, x3 + L3) = Aμ(t, x1, x2, x3) (9)

in this paper. Effects of the center vortexes like those shown 
in [33] are not considered here. We require that

U (t, x1 + L1, x2, x3) = U (t, x1, x2, x3)

U (t, x1, x2 + L2, x3) = U (t, x1, x2, x3)

U (t, x1, x2, x3 + L3) = U (t, x1, x2, x3), (10)

for continuous gauge transformation on the manifold R ⊗ S1 ⊗
S1 ⊗ S1.

Quantum field theories on R ⊗ S1 ⊗ S1 ⊗ S1 are quite similar 
to quantum mechanics in the box normalization scheme. In such 
scheme the momentum operator −i 
∇ is a Hermitian operator as 
surface terms vanish according to periodic boundary conditions. 
For quantum field theories on R ⊗ S1 ⊗ S1 ⊗ S1, the surface terms 
also vanish according to periodic conditions (9). Thus the opera-
tor −i 
∇ Aμ is Hermitian. We can get perturbative series similar to 
those in quantum field theory on S4.

We should emphasize here that the manifold R ⊗ S1 ⊗ S1 ⊗ S1

is not Lorentz invariant, which seems troublesome. The manifold 
R ⊗ S1 ⊗ S1 ⊗ S1 looks like the Minkowski space locally. It seems 
to us that the Lorentz invariance can be restored for local quan-
tities in the limit Li → ∞ (i = 1, 2, 3). In fact, Feynman rules of 
quantum theories on the manifold R ⊗ S1 ⊗ S1 ⊗ S1 are similar 
to those on the manifold R4 except for that momenta of particles 
take discrete values for the theory considered here. For the case 
that Li → ∞ (i = 1, 2, 3), summations over discrete momenta val-
ues tend to integrals over the momenta space once such integrals 
are not affected by ultraviolet divergences or mass singularities. 
In perturbative calculations, ultraviolet divergences are absorbed 
into physical constants through renormalization procedures. Mass 
singularities are harmless for local quantities once the summation 
over all possible initial and final states has been performed accord-
ing to the famous Kinoshita–Lee–Nauenberg (KLN) theorem [34,
35]. As a result, we simply assume that the Lorentz invariance can 
be restored in the limit Li → ∞ (i = 1, 2, 3) for local quantities 
which are multiplicative renormalized and infrared safe. Renormal-
ization properties and KLN cancellations of theories on the mani-
fold R ⊗ S1 ⊗ S1 ⊗ S1 are not considered here.

To explain what happens on the manifold R ⊗ S1 ⊗ S1 ⊗ S1, 
we consider a gauge theory of which the gauge group is U (1). Al-
though such gauge theory is free from the Gribov ambiguity in 
Landau gauge, it is convenient to take this theory as an example to 
show that the gauge condition

n · ∂n · A = 0 (11)

is a continuous gauge on R ⊗ S1 ⊗ S1 ⊗ S1 and free from the Gribov 
ambiguity, where nμ is the directional vector along xi -axis (i =
1, 2, 3). According to the boundary conditions (5), we can write 
n · A(x) as:

n · A(x) =
∑

m

ei2πm n·x
n·L fm(xT ), (12)

where Lμ = (0, L1, L2, L3) and xT is defined as

xμ
T ≡ xμ − n · x

n2
nμ. (13)

A continuous gauge transformation U (x) = exp(iφ(x)) should also 
satisfy the boundary conditions (5). We thus have:

φ(x) = 2π N
n · x

n · L
+

∑
m �=0

ei2πm n·x
n·L gm(xT ), (14)

where N is an arbitrary integer. Under the gauge transformation 
U (x), we have
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