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In the framework of horizon thermodynamics, the field equations of Einstein gravity and some other 
second-order gravities can be rewritten as the thermodynamic identity: dE = T dS − PdV . However, in 
order to construct the horizon thermodynamics in higher-order gravity, we have to simplify the field 
equations firstly. In this paper, we study the fourth-order gravity and convert it to second-order gravity 
via a so-called “Legendre transformation” at the cost of introducing two other fields besides the metric 
field. With this simplified theory, we implement the conventional procedure in the construction of the 
horizon thermodynamics in 3 and 4 dimensional spacetime. We find that the field equations in the 
fourth-order gravity can also be written as the thermodynamic identity. Moreover, we can use this 
approach to derive the same black hole mass as that by other methods.

© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It has long been known that gravitational system has thermody-
namic properties since the works of Hawking and Bekenstein [1,2]. 
Just like conventional thermodynamic systems, black holes also 
have the temperature, entropy and other thermodynamic quanti-
ties. Besides, black holes also have fruitful phase structures [3–16]. 
Not only that, it was found that the field equations of Einstein 
gravity and other more general gravitational theories, such as f (R)

gravity, can be derived from an equation of state of local spacetime 
thermodynamics [17,18].

There is another route to explore the relationship between the 
gravitational system and its relevant thermodynamic properties. It 
is the framework of horizon thermodynamics proposed by Pad-
manabhan [19]. It is shown that Einstein’s field equations for a 
spherically symmetric spacetime can be written in the form of 
thermodynamic identity: dE = T dS − PdV . This makes the connec-
tion between gravity and thermodynamics more closely. The radial 
pressure P is the (r

r) component of energy–momentum tensor. This 
approach has also been extended to the non-spherically symmet-
ric cases [20,21] and other theories of gravity, such as Lovelock 
gravity [22], Hořava–Lifshitz theory [23] and Einstein gravity with 
conformal anomaly [24].
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However, we can notice that many previous works on horizon 
thermodynamics were based on the second-order gravities. This 
means that in the field equations there are at most the second-
order derivatives of metric functions. In fact, one can find that in 
many cases only the first-order derivatives of metric functions ex-
ist. The work [23] on the Hořava–Lifshitz theory is the first study 
on horizon thermodynamics in higher-order derivative gravity. But 
it is shown that the field equations of Hořava–Lifshitz gravity in 
the static, spherically symmetric case, only include the first-order 
derivatives of metric functions. Generally, in higher derivative grav-
ities, the field equations are full of higher-order derivatives of met-
ric functions and are very complicated. We cannot directly extend 
the previous approach to these theories. We should first reduce the 
higher-derivative gravity to some lower-derivative gravity. This pro-
cess can be done via a “Legendre” transformation [25–27]. One can 
even convert the higher-derivative gravity from the original Jordan 
frame into Einstein frame by a conformal transformation [28,29]
or field redefinition [30]. Under some conditions, one can verify 
the equivalence of black hole thermodynamics between the two 
frames [30,31]. However, we do not want to deal with the hori-
zon thermodynamics of higher-derivative gravity in the Einstein 
frame, because there is still no consensus on the physical equiv-
alence between the Jordan frame and the Einstein frame [32–34]. 
In this paper we will study a fourth-order derivative gravity. Via 
the “Legendre” transformation, it can be reduced to a second-order 
derivative gravity with some additional auxiliary fields, which is 
still equivalent to the original fourth-order derivative gravity. In 
this way, the field equations can be simplified greatly. Thus, we 
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can extract the useful information from the field equations to con-
struct the horizon thermodynamics.

The plan of this paper is as follows: In Sec. 2 we give a very 
short introduction to horizon thermodynamics in Einstein gravity. 
We present the necessary demonstrations on some notations. In 
Sec. 3 we introduce the fourth-derivative gravity theory and obtain 
the second-derivative gravity via the “Legendre” transformation. In 
Sec. 4 we give some examples to show the horizon thermodynam-
ics in fourth-derivative gravity in 3 and 4 dimensional spacetime. 
In Sec. 5 we summarize our results and discuss the possible future 
directions. In Appendix, we give the complete form of some field 
equations in components.

2. Horizon thermodynamics in Einstein gravity

In this section, we simply introduce the horizon thermodynam-
ics in Einstein gravity first proposed in [19]. For a static, spherically 
symmetric spacetime, the metric in the Schwarzschild gauge can 
be written as

ds2 = − f (r)dt2 + f (r)−1dr2 + r2d�2. (2.1)

Substituting the metric into Einstein field equation

Gμ
ν = Rμ

ν − 1

2
Rgμ

ν = 8π T μ
ν, (2.2)

one can obtain

r+ f ′(r+) − 1 = 8πr2+ P , (2.3)

and thus

d
( r+

2

)
= f ′(r+)

4π
d(πr2+) − PdV , (2.4)

where r+ represents the position of the event horizon, which must 
satisfy f (r+) = 0. P = T r

r |r=r+ , is the radial pressure of matter at 
the horizon. V = 4πr3+/3 is called the “areal volume”. According 
to Eq. (2.1), it is just the volume of the black hole with horizon 
radius r+ in the coordinate.

Considering the temperature of the black hole is

T = κ

2π
= f ′(r+)

4π
, (2.5)

Eq. (2.4) is just the conventional thermodynamic identity dE =
T dS − PdV with E = r+/2, S = A/4 = πr2+ . In the source-free case, 
the metric function represents Schwarzschild black hole. For this 
black hole, E is just the mass M of the black hole.

This result above only depends on the theories of gravity under 
consideration. It has nothing to do with the concrete black hole 
solution. The contributions from matter fields have been contained 
in the pressure P . Obviously, except for vacuum cases, E �= M gen-
erally.

In this case, only two pairs of thermodynamic variables exist, 
which are the intensive quantities (T , P ) and the extensive quan-
tities (S, V ). In this framework the thermodynamic properties are 
directly related to the gravitational theories under consideration. 
The details of matter content are not important and the concrete 
black hole solutions are also not necessary. In this framework, we 
have studied the phase transitions and thermodynamic stabilities 
of black holes in general relativity and Gauss–Bonnet gravity [35].

3. The fourth-order gravity

In this section we will generalize the original horizon thermo-
dynamics approach to the higher-derivative gravity. Let us consider 
a fourth-derivative gravity action

S = SG + SM =
∫

ddx (LG +LM)

=
∫

ddx
√−g (LG + LM) , (3.1)

where SM represents the action of matter fields, and the gravita-
tional Lagrangian LG takes the form

LG = 1

κ

(
R − 2� + αR2 + βRμν Rμν

)
, (3.2)

with κ = 16πGd . It should be noted that the matter fields are nec-
essary to derive the horizon thermodynamics, although its concrete 
form is not necessary. We need energy–momentum tensor to de-
termine the PdV term uniquely.

The field equations that follow from the action Eq. (3.1) are

Gμν + Eμν = 8πGd Tμν, (3.3)

where

Gμν = Rμν − 1

2
gμν R + �gμν,

Eμν = 2β(Rμρ Rν
ρ − Rρσ Rρσ gμν) + 2αR (Rμν − R gμν)

+ β (�Rμν + ∇ρ∇σ Rρσ gμν − 2∇ρ∇(μRν)
ρ)

+ 2α (gμν �R − ∇μ∇ν R). (3.4)

If substituting the metric (2.1) into these field equations, the ex-
pressions are so complicated that one cannot directly construct the 
horizon thermodynamics.

Now we employ the “Legendre” transformation to simplify the 
field equations. We can introduce two conjugate fields in the fol-
lowing way:

� = δL
δR

, 
μν = δL
δRμν

, (3.5)

where L =LG +LM .
We can further set 

√−gφ = � and 
√−gψμν = 
μν . In this 

way, we can obtain

φ = 1

κ
(1 + 2αR), ψμν = 2β

κ
Rμν. (3.6)

Now we take the “Legendre” transformation according to the two 
pairs of conjugated quantities. First, we should invert Eq. (3.6) to 
obtain R and Rμν as functions of φ and ψμν , respectively. This 
can be easily done. Then substituting them into the following def-
inition:

H(φ,ψμν) = �R + 
μν Rμν −L

= √−g

[
(κφ − 1)2

4ακ
+ κ

4β
ψμνψμν + 2�

κ
− LM

]
.

(3.7)

At last, we define

LH (gμν,φ,ψμν) = �R + 
μν Rμν −H(φ,ψμν)

= √−g

[
φR + ψμν Rμν − 2�

κ
− (κφ − 1)2

4ακ

− κ

4β
ψμνψμν + LM

]
. (3.8)

Treating gμν, φ, ψμν as three independent field variables, the vari-
ation of the Lagrangian (3.8) yields the following field equations:
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