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We propose a new method to test modified gravity theories, taking advantage of the available data on 
extrasolar planets. We computed the deviations from the Kepler third law and use that to constrain 
gravity theories beyond General Relativity. We investigate gravity models which incorporate three 
screening mechanisms: the Chameleon, the Symmetron and the Vainshtein. We find that data from 
exoplanets orbits are very sensitive to the screening mechanisms putting strong constraints in the 
parameter space for the Chameleon models and the Symmetron, complementary and competitive to other 
methods, like interferometers and solar system. With the constraints on Vainshtein we are able to work 
beyond the hypothesis that the crossover scale is of the same order of magnitude than the Hubble radius 
rc ∼ H−1

0 , which makes the screening work automatically, testing how strong this hypothesis is and the 
viability of other scales.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Gravity theories beyond General Relativity (GR) are a possi-
ble theoretical framework to explain several cosmological prob-
lems [1]. In particular, the intriguing present day’s cosmic accel-
erated expansion [2,3]. Theoretical models which predict an ex-
tension to General Relativity must, however, comply with strong 
requirements: first of all the model must have similar predictions 
to those of the benchmark model �CDM at cosmological scales: 
observational data from both the background evolution and the 
linear large scale structure formation regime is fully consistent 
with �CDM [4]. Another condition is that the modifications to 
General Relativity must be suppressed, by physical mechanisms, 
in the regimes which are well tested, e.g. solar system scales. This 
requirement is assured via the so called screening mechanisms [5].

Modified gravity models with screening mechanism have been 
extensively studied in the literature: either focusing on the back-
ground cosmology [6,7], large and linear cosmological scales 
[8–11] or on astrophysical scales in the nonlinear regime [12], and 
finally at the small solar system scales using local gravity tests 
[13,14].
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Any weakness in the screening mechanisms should result in 
appreciable deviations in what we predict from the General Rel-
ativity or, in weak field regime, from the Newtonian gravity. This 
kind of deviations have been used to test modified gravity inside 
the solar system with, for instance, spectral deviation data from 
the Cassini space mission, which ensures that the gravitational po-
tential at the Sun surface must deviates less than 10−5 from the 
value predicted by the Newtonian gravity [13]. Another interesting 
work investigates how much the gravity may deviates from the 
Newtonian gravity using the well measured solar system bodies 
orbits [14].

An important feature in the screening mechanisms is the de-
pendence on the physical properties of the environment as the 
density field, for instance. Thus we expect that the information 
from different planetary systems should give more statistical sig-
nificance once the screening works in different ways for each one. 
On the other side any significantly deviation should already be 
measured in Solar System, therefore this deviation must be small 
even in other planetary system.

In this work we investigate the possibility of using exoplanet 
data to test and constrain modified gravity models. This is not the 
first attempt to constrain modified gravity with exoplanets [15], 
but in there the authors just compared the theoretical prediction 
with only one measurement, the transiting exoplanet HD209458b 
“Osiris”. This lacks statistical rigor, and in this work, we use more 
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than one hundred data points and propose a statistical method to 
make a thorough treatment and study of these systems. The data 
are obtained from exoplanets.org portal [16].

2. The method

For any gravitational theory the planetary motion is described 
by the dynamics of a particle under the influence of a central force, 
i.e. the spatial dependence of the force is only on the distance of 
the planet to the force center, inside the host star. The relation 
between the revolution period, T , of a planet in a circular orbit, of 
radius r, and the absolute value of the gravitational force, F (r), is 
given by [17]

T 2 = 4π2r

F (r)

(
1

M�

+ 1

Mp

)−1

, (1)

where Mp and M� are the masses of the planet and the star 
respectively. For a modified gravity the total force is the sum be-
tween the Newtonian force and a fifth force, F (r) = F N (r) + F5th(r). 
If the fifth force is null this relation reduces to the third Kepler 
law

T 2
K = 4π2r3

G(Mp + M�)
, (2)

where G = 6.67384 ×10−8 cm3 g−1 s−2 is the Newton gravitational 
constant. So the deviation of the square period from the third Ke-
pler law is(

T K

T

)2

− 1 = F5th

F N
= ε. (3)

Therefore, we can use the measured values of ε to constrain mod-
ified gravity using a χ2 given by the sum between the weighted 
residuals of all the N measurements

χ2(θ) =
N∑

i=1

(
εth(φ(xi, θ)) − εobs,i

σi

)2

, (4)

where εth is the theoretical prediction for ε (the ratio between 
the fifth and Newtonian forces predicted by theory), εobs is the 
observed value of ε (the deviation of the square period from the 
third Kepler law computed from the data), and σi is the standard 
deviation (computed from the data by error propagation, the the-
oretical error can be neglected because it is proportional to ε2). 
θ is a vector of model parameters and x is a vector of the physical 
properties of the star-planet system, which are: r – the planet orbit 
radius, R� – the star radius, ρ� – the star density, 
S – the sur-
face Newtonian potential. The field is also a function of the galaxy 
density, ρg = 10−24 g/cm3.

To compute the credible regions with 95% of confidence level 
(C.L.), we find the values of χ2 which delimit the bounds (χ2

b ), i.e. 
the value which gives

P (θ) = 1

(2π)N/2
∏N

i σ i

∫
�χ2<�χ2

b

e−�χ2(θ)/2dθ , (5)

equals to 0.95. Where �χ2 = χ2 −χ2
min, and χ2

min is the minimum 
value of χ2. Fig. 1 (top) shows a comparison between the residu-
als distribution with a normal distribution of the same mean and 
standard deviation, which suggests that this is a good approxima-
tion for the data distribution. Therefore assuming this distribution 
to solve (5) we find �χ2

b � 5.99 and �χ2
b � 8.08 for models with 

2 and 3 free parameters, respectively [18].

Fig. 1. Top: The residual distribution of εobs compared with a normal distribution 
with the same mean and standard deviation. Bottom: εobs with error bars in func-
tion of the semi major axis. However the values are very close to 0 (∼ 10−5) the 
errors are much larger (∼ 10−1), which permits a the existence of a fifth force.

The values of χ2
min can me found minimizing the function (4), 

but this is not a single point for the tested models, there is a 
degeneracy between the parameters. To avoid this problem we as-
sume χ2

min equal to the value of χ2 for which the fifth force is 
null, i.e. εth ≡ 0, this assumption does not change the results. For a 
constant deviation, for example, we find ε = (0.0+6.0

−6.0) × 10−3 with 
this assumption and ε = (−0.1+6.1

−5.9) × 10−3 without it. A shift less 
than 1% of the confidence interval, and it is reduced in the cases 
with screening.

3. The data

Our observational data comes from the website exoplanets.org
[16], which has a compilation of all observed exoplanetary sys-
tems: there are 2926 planets with well defined orbits. From those 
we pick for our analysis 177 planets with circular orbits and with 
measurements of all properties listed above. These systems are 
typically composed by a star, similar to the Sun, with a mass that 
varies from 0.5M� to 1.5M� , and planets like the jovian planets, 
with masses between 3.2M⊕ and 600M⊕ and typically close to the 
host star, with orbit radius smaller than 0.5 AU. This corresponds 
to short periods, less than a few months.

All the properties are measured by gravity-independent meth-
ods, except the orbit radius which use the third Kepler law [19]. 
However this looks like a circularity it does not affect considerably 
our analysis, any appreciable deviation in orbit radius such would 
already have been measured in the Solar System. The Cassini mis-
sion [13] measured, by light time delay, the possible deviation 
from Newtonian gravitational constant in Solar System and the ob-
tained value is very short

�G

G
= γ − 1

2
� 10−5, (0.68% C.L.). (6)

However the photons may be coupled differently to the field, we 
expect a correction of the same order in the orbit radius, which is 
much smaller than σi . Fig. 1 (bottom) shows that the deviations 
from the third Kepler law (εobs ∼ 10−5) are very smaller than the 
errors (σ ∼ 10−1), suppressing any possible bias. In summary the 
possibility to measure deviations from Newtonian gravity is not 
in the measurements per se but with their errors. The relativistic 
corrections, which are less than 10−8, are not appreciable, in solar 
system, for example, the most affected body is Mercury, which the 
orbit radius is well determined by the Newtonian gravity, the effect 
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