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We study the tensor-optimized antisymmetrized molecular dynamics (TOAMD) as a successive variational 
method in many-body systems with strong interaction for nuclei. In TOAMD, the correlation functions for 
the tensor force and the short-range repulsion and their multiples are operated to the AMD state as the 
variational wave function. The total wave function is expressed as the sum of all the components and 
the variational space can be increased successively with the multiple correlation functions to achieve 
convergence. All the necessary matrix elements of many-body operators, consisting of the multiple 
correlation functions and the Hamiltonian, are expressed analytically using the Gaussian integral formula. 
In this paper we show the results of TOAMD with up to the double products of the correlation functions 
for the s-shell nuclei, 3H and 4He, using the nucleon–nucleon interaction AV8′. It is found that the 
energies and Hamiltonian components of two nuclei converge rapidly with respect to the multiple of 
correlation functions. This result indicates the efficiency of TOAMD for the power series expansion in 
terms of the tensor and short-range correlation functions.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

One of the central issues in nuclear physics is to understand the 
nuclear structure from the nucleon–nucleon (N N) interaction. The 
N N interaction has a strong tensor force at long and intermediate 
distances and a strong repulsion at short distance [1,2]. It is im-
portant to investigate the nuclear structure considering the above 
characteristics of the N N interaction.

The origin of the tensor force is the one-pion exchange inter-
action, which brings the high-momentum components of nucleon 
motion in nuclei. It is necessary to treat the high-momentum com-
ponents induced by the tensor force in the nuclear wave function. 
The tensor force also produces the characteristic D-wave state of a 
nucleon pair in nuclei, which comes from the strong S-D coupling 
of the tensor force. This D-wave state is spatially compact as com-
pared with the S-wave state due to the high-momentum compo-
nent of the tensor correlation [3]. The high-momentum component 
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in nuclei coming from the tensor correlation has been investigated 
experimentally with the (p, d) reaction [4].

So far, we have described the tensor correlation with high-
momentum components on the shell model basis, which we name 
“tensor-optimized shell model” (TOSM) [5,6]. In TOSM, we fully 
optimize the two-particle two-hole (2p2h) states in the wave func-
tion. There is no truncation for the particle states in TOSM. In 
particular, the spatial shrinkage of the particle states is essential to 
achieve convergence of the contributions of tensor force. This prop-
erty is related to the inclusion of the spatially compact D-wave 
state with high momentum in the wave function.

The clustering of nucleons is one of the important aspects in 
the nuclear structure, such as the two-α state in 8Be and the Hoyle 
state in 12C as the triple-α state [7,8]. Those clustering states can 
coexist with shell model-like states in a nucleus such as 12C, the 
ground state of which is considered to be the shell model-like 
state. Theoretically, it is generally difficult to describe the clus-
tering states in the shell model type approach, while the shell 
model-like states are fairly described [6,9,10]. It is also known that 
the α cluster itself contains the large contribution of the tensor 
force [5,11]. The relation between the N N interaction and the co-
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existence of the clustering states and the shell model-like states is 
unclear.

It is important to understand the nuclear clustering phenomena 
from the viewpoint of the N N interaction and the tensor force. 
One of the theoretical approaches to describe the nuclear clus-
tering is the antisymmetrized molecular dynamics (AMD) [12,13]. 
The AMD wave function consists of the Gaussian wave packet for 
each nucleon, which is suitable to express the formation of cluster 
with spatial localization of some of nucleons in a nucleus. So far, 
AMD has shown the successful results in the description of var-
ious clustering states in finite nuclei from light mass to medium 
mass region [8]. However, this model cannot treat the tensor force 
and/or short-range repulsion, and it is necessary for the AMD anal-
ysis to rely on the effective interaction of mild central force and L S
force without the tensor force.

For the clustering description of nuclei based on the N N inter-
action, the unitary correlation operator method (UCOM) has been 
developed to treat the short-range and tensor correlations [14,
15]. Using the Fermionic molecular dynamics (FMD) with UCOM, 
they have discussed the clustering phenomena [16]. In UCOM, the 
unitary-transformed Hamiltonian is truncated up to the two-body 
operator, while the exact transformation produces many-body op-
erators. This truncation seems reasonable for short-range repulsion 
because of the short-range character, but tensor force has a long-
range character and many-body operators should be important for 
the tensor correlation to work correctly. The many-body operators 
are also important for the consistent treatment of the variational 
principle starting from the N N interaction.

In our study of TOSM, only the short-range part of UCOM is 
adopted to describe the short-range correlation in the shell-model 
type basis states, while the tensor correlation is explicitly treated 
using the full 2p2h excitation in the wave function. The method of 
TOSM+UCOM nicely works to describe the shell model-like states 
with the correct order of the energy level in the p-shell nuclei, 
while the α clustering states such as those in 8Be and 12C are 
difficult to describe quantitatively [10,17].

Toward the nuclear clustering description from the N N interac-
tion, we have proposed a new variational theory [18]. We employ 
the antisymmetrized molecular dynamics (AMD) [12,13] as the ba-
sis state. We introduce two-kinds of correlation functions of the 
tensor-operator type for the tensor force and the central-operator 
type for the short-range repulsion. This physical concept is simi-
lar to UCOM [15]. The correlation functions are multiplied to the 
AMD wave function as the correlated basis states and superposed 
with the AMD wave function. We name this framework “tensor-
optimized antisymmetrized molecular dynamics” (TOAMD) [18]. In 
TOAMD, the products of the Hamiltonian and correlation functions 
become the series of the many-body operators, which are exactly 
treated using the cluster expansion. We take all the necessary 
many-body operators without any truncation, which enable us to 
determine the correlation functions variationally. The formulation 
of TOAMD is common for all nuclei with various mass numbers. 
The scheme of TOAMD is extendable by taking the series of the 
multiple product of correlation functions as the power expansion. 
This is done systematically and successively in TOAMD and neces-
sary formulas are published [18].

In this paper, we take up to the double products of correla-
tion functions of tensor and short-range types, and investigate the 
convergence of the solutions with respect to the multiples of corre-
lation functions and discuss the role of each term. To demonstrate 
the new successive variational method, we take the s-shell nuclei, 
3H and 4He, using the AV8′ N N interaction.

2. Tensor-optimized antisymmetrized molecular dynamics 
(TOAMD)

We explain the basic formulation of TOAMD, while all the de-
tails are given in Ref. [18]. We start from the AMD wave function, 
which is expressed by using the Slater determinant of the Gaussian 
wave packets of nucleons with mass number A. The AMD wave 
function �AMD is explicitly given as:

�AMD = 1√
A!det

{
A∏

i=1

φi

}
, (1)

φ(�r) =
(

2ν

π

)3/4

e−ν(�r−�D)2
χσ χτ . (2)

The single-nucleon wave function φ(�r) consists of a Gaussian wave 
packet with a range parameter ν and a centroid position �D , the 
spin part χσ and isospin part χτ . In this study of s-shell nuclei, 
χσ is fixed as up or down component and χτ is proton or neutron 
component. The range ν is common for all nucleons and this con-
dition factorizes the center-of-mass wave function from �AMD. The 
range ν also contributes to the spatial size of �AMD.

In TOAMD we include two-kinds of correlations induced by the 
tensor force and short-range repulsion, which are difficult to treat 
in the AMD wave function �AMD. Following the concept given in 
Ref. [19,20], we introduce the pair-type correlation functions F D

for tensor force and F S for short-range repulsion and multiply 
them to the AMD wave function. This choice of the TOAMD wave 
function is motivated by the success of TOSM [5,10]. We superpose 
these components with the original AMD wave function. Here we 
define the basic TOAMD wave function as:

�basic
TOAMD = (1 + F D)(1 + F S) × �AMD , (3)

F D =
1∑

t=0

A∑
i< j

f t
D(ri j) O t

i j r2
i j S12(r̂i j) , (4)

F S =
1∑

t=0

1∑
s=0

A∑
i< j

f t,s
S (ri j) O t

i j O s
i j , (5)

with relative coordinate �ri j = �ri − �r j , O t
i j = (�τi · �τ j)

t and O s
ij = (�σi ·

�σ j)
s . Here t and s represent the isospin and spin channel of a pair, 

respectively. The correlation functions F D and F S affect only the 
relative motion of nucleon pairs in �AMD, and do not excite the 
center-of-mass motion. The center-of-mass motion is completely 
removed in TOAMD. The function F D induces the relative D-wave 
transition via the tensor operator S12:

S12(r̂i j) = 3(�σi · r̂i j)(�σ j · r̂i j) − �σi · �σ j . (6)

The functions F D and F S are scalar operator and do not change 
the total angular-momentum state of �AMD. In general, two func-
tions F D and F S are not commutable. Physically, the functions F D

and F S can excite two nucleons in the AMD state to the high-
momentum region corresponding to the 2p2h excitation in the 
shell model. This formulation of TOAMD is independent of the 
mass number A and commonly used for all nuclei.

We state here the essential difference of TOAMD from the 
Green’s function Monte-Carlo (GFMC) method [1]. In the GFMC 
method, the standard concept of correlation function is used, 
where it is expressed by a product:

F GFMC
S =

A∏
i< j

(
1 +

1∑
t=0

1∑
s=0

f t,s
S (ri j) O t

i j O s
i j

)
. (7)
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