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Quantum theory is proposed of high energy electrons scattering in ultrathin crystals. This theory is 
based upon a special representation of the scattering amplitude in the form of an integral over the 
surface surrounding the crystal, and on the spectral method of determination of the wave function. The 
comparison is performed of quantum and classical differential scattering cross-sections in the transitional 
range of crystal thicknesses, from those at which the channeling phenomenon is not developed up to 
those at which it is established. It is shown that in this thickness range the quantum scattering cross-
section, unlike the classical one, contains sharp peaks corresponding to some specific scattering angles, 
that is connected with the diffraction of the incident plane wave onto the periodically distributed crystal 
atomic strings. It is shown that the value of the scattering cross-section in the peaks varies periodically 
with the change of the target thickness. We note that this must lead to a new interference effect in 
radiation that is connected with the rearrangement of incident wave packet in transitional area of crystal 
thicknesses.

© 2017 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

At passing of fast charged particles through crystals the phe-
nomenon of channeling is possible, at which the particles move 
inside the channels formed by crystal atomic strings or atomic 
planes, being periodically deviated to small angles from the chan-
nel direction [1,2]. In ultrathin crystals there is no room for chan-
neling phenomenon to develop (see Fig. 1). However, there re-
mains the possibility of appearance of several coherence and in-
terference effects at interaction of particles with crystal atoms (at 
high energies the attention to this fact was paid in the works 
[3–5]). Such phenomena take place in several electromagnetic 
processes at high energies in crystals, such as scattering, radia-
tion and electron–positron pairs creation (see [2,6] and references 
therein).

The present work is devoted to the development of classical 
and quantum theories of high energy charged particles scattering 
in transitional range of crystal thicknesses, from those thicknesses 
at which the channeling phenomenon is not developed up to those 
at which this regime of motion is established. Quantum theory is 
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based upon the special representation of the scattering amplitude 
[7] in the form of an integral over the surface surrounding the 
region of influence of external crystal field onto the particle (in the 
considered problem this corresponds to the field of entire crystal), 
and upon the development of numeric methods of calculating of 
the wave function inside the crystal, that is realized by using the 
so-called spectral method of solving wave equations [8–10]. The 
classical theory is based upon the solution of the particle motion 
equation by numerical methods [11]. The main attention is paid to 
the comparative analysis of quantum and classical characteristics of 
the scattering process at different crystal thicknesses and particle 
energies.

The kinetic energies of particles in the considered calculation 
method may vary in a wide range, from several hundreds of keV 
up to hundreds of GeV. By varying energy inside this range, we 
can pass from the conditions at which the motion of particles is 
substantially quantum up to those at which it is quasi-classical and 
can be described with good precision by means of classical theory.

In the last years new possibilities have opened to carry out 
experimental research in this field, that is connected with the de-
velopment of technologies of ultrathin crystals production for the 
accelerator experiments, and improving of the beam parameters 
[12,13]. Due to this, one can now speak about discovering quan-
tum and classical effects in scattering discussed in the present 
paper.

http://dx.doi.org/10.1016/j.physletb.2017.03.041
0370-2693/© 2017 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

http://dx.doi.org/10.1016/j.physletb.2017.03.041
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:shulga@kipt.kharkov.ua
http://dx.doi.org/10.1016/j.physletb.2017.03.041
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2017.03.041&domain=pdf


142 N.F. Shul’ga, S.N. Shulga / Physics Letters B 769 (2017) 141–145

Fig. 1. Scattering in channeling regime (a) and in absence of channeling (b).

2. Quantum theory

Let us consider the scattering of relativistic electrons incident 
onto a thin crystal along one of its crystal axes. Differential scatter-
ing cross-section and scattering amplitude in this case are defined 
by the following formulas [2]:

dσ

do
= |a (ϑ)|2, (1)

a (ϑ) = − 1

4π h̄2

∫
V

d3r e− i
h̄ p′ru′γ0 U (r)ψ (r), (2)

where ϑ is the scattering angle, ψ(r) – the wave function of the 
electron passing through crystal, u′ and p′ – bispinor and momen-
tum of the scattered electron respectively, and U (r) – the potential 
energy of interaction of the electron with crystal lattice field (we 
use the system of units in which the light velocity is equal to one, 
c = 1). Integration in (2) is performed inside the volume V where 
the particle is subject to the external field action.

At incidence of fast particles onto a crystal along one of its axes 
(we will name it z axis) the correlations between consequent col-
lisions of the particle with lattice atoms are substantial. As a result 
of these correlations, the particle motion is mainly determined by 
the continuous potential of crystal atomic strings situated parallel 
to the z axis, so the lattice potential averaged along this axis is 
[1,2]:

Uc (ρ) = 1

L

L∫
0

dz U (r), 0 ≤ z ≤ L, (3)

where L is the crystal thickness and ρ – the co-ordinates (x, y) in 
the plane orthogonal to the z axis (outside crystal Uc(ρ) = 0).

By using the Dirac equation for the wave function of electron 
in the field U (r):

(εγ0 + ih̄ γ ∇ − m)ψ = γ0 U (r)ψ, (4)

we write the scattering amplitude (2) in the form

a (ϑ) = − i

4π h̄

∫
V

d3r div
(

u′ γ ψ (r) e− i
h̄ p′r

)
. (5)

The scattering amplitude in this case, with use of the Gauss theo-
rem, can be presented in the form of integral over a closed surface 
surrounding the external field region [7]:

a (ϑ) = − i

4π h̄

∮
dS u′ γ ψ (r) e− i

h̄ p′r, (6)

where dS is an element of the surface surrounding the crystal.

It is essential that the surface integral in (6) does not depend 
on the surface form, so as the only requirement imposed on this 
surface is that it surround the entire area of the external field ac-
tion. In the considered problem it is convenient to choose as such 
a closed surface a cylinder whose bases coincide with the crys-
tal sides. By neglecting the contribution of the cylinder lateral side 
parallel to the z axis in the surface integral (6), we come to the 
following expression for the scattering amplitude:

a(ϑ) = − i

4π h̄

∫
d2ρ e− i

h̄ p′r u′ γz ψ (r)
∣∣∣z=L

z=0
. (7)

For determining the wave function of electron in the field 
Uc(ρ) we will use the squared Dirac equation [2]:[(

ε − Uc(ρ)
)2 − (ih̄∇)2 − m2 + ih̄ α ∇Uc(ρ)

]
ψ(r) = 0, (8)

where m and ε are particle mass and energy respectively, and α =
γ0γ .

Before entering into the crystal, the electron wave function is 
represented as a plane wave characterized by momentum p and 
bispinor up . Then, by detaching from ψ(r) the bispinor up and the 
plane wave factor (we define ψ (r) ≡ ϕ (r) up e

i
h̄ pr), we come to the 

following equation for ϕ(r):

ih̄v∂zϕ =
[

p̂2

2ε
+ Uc(ρ) − ih̄

2ε
α∇Uc(ρ) − U 2

c (ρ)

2ε

]
ϕ(r), (9)

where v = p/ε is the velocity of electron and p̂ = −ih̄∇ – operator 
of momentum.

Characteristic values for the scattering angles of high energy 
electrons in thin crystal are small compared to one. In this case, 
by resolving the Eq. (9), we can neglect spin effects in scattering 
(spin-field interaction), so far as the terms proportional to U 2/2ε
and p̂2

z/2ε. As a result, we come to the following equation for 
ϕ(r):

ih̄v∂zϕ =
[

p̂2⊥
2ε

+ Uc (ρ)

]
ϕ, (10)

where p̂⊥ = −ih̄ ∂
∂ρ .

The equation (10) is a Schrödinger-like equation, where the 
particle mass is replaced by the energy and instead of time we 
use z/v , so it can be solved with the help of numerical method 
developed in [8]. The process of determination of the wave func-
tion in the considered problem based upon this method consists 
in the following. Relying on the analogy of equation (10) with 
the Schrödinger equation, the evolution of the wave function with 
depth δz of particle’s penetration into crystal is expressed, accord-
ing to (10), in the following operator form:

ϕ(ρ, z + δz) = exp
{

i
δz

h̄v

[ p̂2⊥
2ε

+ Uc(ρ)
]}

ϕ(ρ, z). (11)

This expression is formally exact for any δz, but direct applica-
tion of it leads to mathematical difficulties that are connected with 
the fact that the exponent index in (11) is composed of two non-
commuting terms.

However, at small values of δz application of operator tech-
nique [14] lets one write (11) in approximated form in which the 
commutators of the order higher than 

[
Â, B̂

]
are neglected, where 

Â = (i/h̄v) · (p̂2⊥/2ε
)

and B̂ = (i/h̄v) Uc(ρ). So, with the precision 
up to the terms proportional to δz3, such Zassenhaus product for-
mula is true:

exp
(
δz( Â + B̂)

) ≈ exp

(
δz

B̂

2

)
exp

(
δz Â

)
exp

(
δz

B̂

2

)
. (12)
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