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We show the realization of axion electrodynamics within the Dual Chiral Density Wave phase of dense 
quark matter in the presence of a magnetic field. The system exhibits an anomalous dissipationless Hall 
current perpendicular to the magnetic field and an anomalous electric charge density. Connection to 
topological insulators and 3D optical lattices, as well as possible implications for heavy-ion collisions and 
neutron stars are outlined.
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1. Introduction

In the past few years new macroscopically observable quan-
tum effects that manifest through the interaction of matter with 
electromagnetic fields in QCD and condensed matter are attracting 
much attention [1,2]. These effects are connected to the nontrivial 
topology of these systems and are related to parity and charge-
parity symmetry violations. The interaction between the electro-
magnetic field and matter with nontrivial topology is described by 
the equations of axion electrodynamics,

∇ · E = J0 + κ∇θ · B, (1)

∇ × B − ∂E

∂t
= JV − κ(

∂θ

dt
B + ∇θ × E), (2)

∇ · B = 0, ∇ × E + ∂B

∂t
= 0, (3)

proposed by Wilzcek many years ago [3] to describe the effects 
of adding an axion term κ

4 θ Fμν F̃ μν to the ordinary Maxwell La-
grangian. In condensed matter, a term of this form has been shown 
to emerge in: 1) topological insulators (TI) [4], where θ depends 
on the band structure of the insulator, 2) Dirac semimetals (DM) 
[5], a 3D bulk analogue of graphene with non-trivial topologi-
cal structures, and 3) Weyl semimetals [6], where the angle θ
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is related to the energy or momentum separation between the 
Weyl nodes.

For quark matter, an electromagnetic axion term can be gen-
erated via two separate mechanisms, one at high temperature (T) 
and the other at high density. At high T, a nontrivial axion field 
θ can arise thanks to the sphaleron transitions over the barrier 
that separates topologically inequivalent vacua [7]. Even though θ
originally enters coupled to the gluon field, a Fujikawa transfor-
mation [8] eliminates such a term, but leads to the reappearance 
of θ in the QED sector of the theory, where it couples to the 
electromagnetic field Fμν and its dual [2]. In the presence of a 
background magnetic field, the induced κ

4 θ Fμν F̃ μν term leads to 
electric charge separation through the well-known Chiral Magnetic 
Effect (CME) [9]. The mechanism at high density, takes place in the 
dual chiral density wave (DCDW) phase of dense quark matter in 
the presence of a magnetic field. The main purpose of this paper is 
to demonstrate the realization of this new mechanism and to show 
how it leads to the generation of a dissipationless Hall current and 
an anomalous electric charge.

We highlight from the onset that the role of the magnetic field 
is quite different at high T than at high density. While at high 
T the magnetic field just serves, via the CME, as a probe of the 
nontrivial QCD vacuum topology that produces the axion field θ ; 
in the high-density case, the magnetic field is itself essential to 
produce the nontrivial topology that manifests, as it will become 
clear below, through the spectral asymmetry of the quarks in the 
lowest Landau level (LLL).
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2. Dissipationless Hall current in cold-dense quark matter at 
B �= 0

Henceforth, we focus on the cold and dense region of QCD. In 
this region the CME should be suppressed, an observation consis-
tent with the Beam Energy Scan (BES) results [10], which show 
that charge separation starts to diminish already at energies be-
low 60 GeV and disappears completely between 19.6 and 7.7 GeV. 
A growing body of works indicates that with increasing density, 
the chirally broken phase of quark matter is not necessarily re-
placed by an homogeneous, chirally restored phase, but instead, at 
least for an intermediate region of densities, the system may fa-
vor the formation of inhomogeneous phases. To gain insight on 
why this occurs notice that with increasing density the homo-
geneous chiral condensate becomes disfavored due to the high-
energy cost of exciting the antiquarks from the Dirac sea to the 
Fermi surface where the pairs form. At the same time, with higher 
densities, co-moving quarks and holes at the Fermi surface may 
pair with minimal energy cost through a mechanism analogous to 
Overhauser’s [11], giving rise to a spatially modulated chiral con-
densate [12]. Spatially modulated chiral condensates in QCD have 
been discussed in the context of quarkyonic matter [13], where 
they appear in the form of quarkyonic chiral spirals [14] at zero 
magnetic field, or double quarkyonic chiral spirals [15] in the pres-
ence of a magnetic field. Inhomogeneous chiral condensates have 
been also studied in the context of NJL models (for a review see 
[16]) that share the chiral symmetries of QCD and are then useful 
to study the chiral phase transition.

From now on, we model cold and dense quark matter in a mag-
netic field with the help of the NJL-QED Lagrangian density

L = − 1

4
Fμν F μν + ψ̄[iγ μ(∂μ + i Q Aμ) + γ0μ]ψ

+ G[(ψ̄ψ)2 + (ψ̄τγ5ψ)2], (4)

with Q = (eu, ed) = ( 2
3 e, − 1

3 e), ψ T = (u, d); μ the baryon chem-
ical potential; and G the four-fermion coupling. The electromag-
netic potential Aμ is formed by the background Āμ = (0, 0, Bx, 0), 
that corresponds to a constant and uniform magnetic field B in 
the z direction, plus the fluctuation field. The presence of the 
field B favors the formation of the DCDW condensate, 〈ψ̄ψ〉 +
i〈ψ̄ iτ3γ5ψ〉 = 	eiqz [17,18] with magnitude 	 and modulation 
vector q = (0, 0, q) along the field direction. In this phase, the 
mean-field Lagrangian is

LM F = ψ̄[iγ μ(∂μ + i Q Aμ) + γ0μ]ψ

− mψ̄eiτ3γ5qzψ − 1

4
Fμν F μν − m2

4G
, (5)

with m = −2G	. The z-dependent mass term can be eliminated 
with the help of the local chiral transformation ψ → U Aψ , ψ̄ →
ψ̄ Ū A , with U A = e−iτ3γ5θ , Ū A = γ0U †γ0 = e−iτ3γ5θ , and θ(t, x) =
1
2 qμxμ = qz/2, so that now

LM F = ψ̄[iγ μ(∂μ + i Q Aμ − iτ3γ5∂μθ) + γ0μ − m]ψ

− 1

4
Fμν F μν − m2

4G
(6)

The energy spectrum of the quarks in (6) separates into the LLL 
(l = 0)

E LLL
k = ε

√
	2 + k2

3 + q/2, ε = ±, (7)

and the higher (l > 0) Landau level

El>0
k = ε

√
(ξ

√
	2 + k2

3 + q/2)2 + 2e|B|l,
ε = ±, ξ = ±, l = 1,2,3, ... (8)

modes. Notice that the LLL spectrum is not symmetric about the 
zero energy level [17,18]. The asymmetry of the spectrum is char-
acterized by a topological quantity, known as the Atiyah–Patodi–
Singer invariant ηB = ∑

k sgn(Ek) [19], a quantity related to the 
chiral anomaly [18]. This sum is divergent and needs to be prop-
erly regularized to ensure that all the energies with equal mag-
nitude and opposite signs cancel out. This implies that only the 
asymmetric modes contribute to ηB and hence the anomalous ef-
fects of the system are connected to the LLL. The regularized index 
ηB = lims→0

∑
k sgn(Ek)|Ek|−s gives rise to an anomalous baryon 

(quark) number density ρ A
B . Regularizing the sum with the help of 

a Mellin transform [18] leads to

ρ A
B = −NcηB/2 = Nc

∑
f

|e f |
4π2

B · �(q · x) = 3
|e|

4π2
qB (9)

for the case q < 2m. The use of a different regularization procedure 
that allows to extract the anomalous part of the thermodynamic 
potential, led to the same anomalous quark number density, ob-
tained in this case not from the index ηB , but as the derivative of 
the thermodynamic potential with respect to the baryon chemical 
potential μ [17]. The extension of this calculation to the isospin 
asymmetric case was done in [20]. When q > 2m, the quark den-
sity acquires an additional, non-topological contribution [18] and 
becomes

ρ A
B = −NcηB/2 = −Nc|eB|

[
−q +

√
q2 − 4m2

]
/4π2 (10)

Notice that if B = 0, the quark spectrum is symmetric, so ηB

vanishes and no anomalous quark number density exists. On the 
other hand, if B �= 0, but m = 0, we have ρ A

B = 0, consistent with 
the fact that in this case there is no DCDW condensate, therefore 
no dependence on the modulation parameter q must remain and 
no anomalous baryon charge must exist. These considerations un-
derline that the nontrivial topology of this model results from the 
interplay of the DCDW ground state and the magnetic field.

At this point, we should notice that the fermion measure in 
the path integral is not invariant under the U A transformation 
that led to (6), because Ū A = U A �= U−1

A and thus Dψ̄ Dψ →
(det U A)−2 Dψ̄ Dψ . Hence, it follows that (det U A)−2 = e−2Tr log U =
e−2i

∫
d4xθ(x)δ(4)(0)trτ3γ5 , with Tr a functional and matrix trace, and 

tr a matrix trace. This expression is ill defined and needs a gauge-
invariant regularization. With that aim, we consider a smooth 
function f (t), such that f (0) = 1, f (∞) = 0, and t f ′(t) = 0 at t = 0
and t = ∞, and regularize the exponent as∫

d4xθ(x)(−2δ(4)(0)trτ3γ5)

= −2 lim
�→∞ Tr

[
θ(x)τ3γ5 f ((iDμγ μ/�)2)

]
, (11)

where Dμ = ∂μ + i Q Aμ − iτ3γ5
q
2 is the corresponding Dirac 

operator. Following Fujikawa’s approach [8], one can show that 
(det U A)−2

R = ei
∫

d4x κ
4 θ Fμν F̃ μν

. The correct effective Lagrangian is 
then

Lef f = ψ̄[iγ μ(∂μ + i Q Aμ − iτ3γ5∂μθ) + γ0μ − m]ψ − m2

4G

− 1

4
Fμν F μν + κ

4
θ Fμν F̃ μν, (12)
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