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Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global 
charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, 
they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete 
symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like 
configuration (hair) at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we 
argue that discrete charges are also respected by gravity.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It has been known for a long time that discrete sub-groups of 
gauge groups, the so-called discrete gauge symmetries, are not bro-
ken by gravitational interactions [1,2]. Effects of quantum gravity 
are studied by looking at various topologies of the metric ten-
sor gμν . If some gauge charges are separated from our Universe 
by metric change, the separated gauge charges cannot be com-
pletely hidden from our Universe because they leave long range 
flux lines. On the other hand, if global charges are separated from 
our Universe, the lost charges leave no hint to an observer in our 
Universe and he notices that global charges are not conserved in 
our Universe. Thus, gauge symmetries are not broken but global 
symmetries are broken by metric changes. This is the basic reason-
ing that discrete gauge symmetries are used in particle physics [3]. 
This top–down approach on discrete symmetries fits to the string 
compactification [4,5] because string theory does not allow any 
global symmetry.

In the bottom–up approach, the flux line argument is not so 
clear. It uses just the classical gauge fields and does not rely on 
the renormalizability in the theory of elementary particles. To be 
specific, let us consider a continuous symmetry U(1). If U(1) is a 
gauge symmetry, it should not have any gauge anomaly. If U(1) is a 
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global symmetry, it may have a gauge anomaly U(1)–G − G where 
G is a gauge group as in the Peccei–Quinn (PQ) global symmetry 
U(1)PQ [6]. Obstructing the PQ symmetry needed for an “invisible” 
axion was based on this argument [7].

However, the absence of any gauge anomaly is not a guaran-
tee for a gauged U(1) symmetry. Some global U(1) symmetries 
may not have any gauge anomaly. The difference in the gauge and 
global symmetries resides in the property on the local transfor-
mation, i.e. using a covariant derivative Dμ = ∂μ − i Aμ in gauge 
theories, or just an ordinary one ∂μ in global symmetries. A dis-
crete subgroup of U(1) cannot know whether the mother U(1) is 
gauged or not. In the bottom–up approach, there must be some 
other reason for the effects of the metric change.

In this paper, we adopt the concept of “hair” which means that 
hair’s thickness is the same at any distance from the surface of 
the head. At the surface, there must be fields at the surface for a 
hair to be defined. This definition excludes any possibility for hairs 
of global symmetries. In gauge theories, there are gauge fields at 
the surface. In gauge theories, the relation of the fields at the sur-
face with the charge Q in the volume enclosed by the surface is 
provided by the equations of motion and current conservation. Ex-
istence of hairs is crucial in guaranteeing the symmetry in the 
presence of the gravitational interaction. It is known that black 
holes have gauge-charge hairs, which will be briefly commented 
in parallel with our method.
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Fig. 1. Multiple discrete vacua. Some of minima are shown as green bullets. (For 
interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

For a gauge charge Q , we have gauge fields spreading out 
from Q . Consider the current jμ and the corresponding electric 
field E along a line to be interpreted as a hair. We can perform lo-
cal transformations such that E is the same along a line but zero 
outside the line, which behaves as a hair.1

In this paper, we show how discrete charges can have hairs in 
the bottom–up approach, and derive that discrete symmetries are 
not broken by gravity. For an explicit presentation, we will present 
examples with the Abelian discrete symmetry ZN and in particular 
with Z2 illustrations.

2. Discrete charges of ZN vacua

A discrete symmetry is defined by the number of minima of the 
potential V such as in Fig. 1. Let us consider one minimum, say a 
green bullet in Fig. 1. We can choose the value of the Higgs field 
to be zero at that point so that the discrete symmetry is realized 
by the Wigner–Weyl manner. If it has a flat direction there, then 
one must consider a continuous symmetry, which has been spon-
taneously broken already. Not considering continuous symmetries, 
with the multiple vacua of Fig. 1, the discrete symmetry is good at 
any point of the minima. We will consider the discrete charges at 
such a minimum.

Realization of discrete symmetries in the Universe leads to do-
main walls [8]. In the “invisible” axion case [9], the Peccei–Quinn 
symmetry leads to ZN domain walls [10]. For the Kim–Shifman–
Vainstein–Zakharov “invisible” axion where there is only one vac-
uum [11], even the Z1 domain wall can be considered in the Uni-
verse evolution [12]. In this case, however, all space points except 
at the wall are in the same vacuum. Different vacua arise for the 
cases of N ≥ 2. Two kinds of walled vacua are possible for Z2, viz. 
Fig. 2. Two vacua of Z2 are defined with discrete charges q = 2n
and 2n + 1, mod. 2 (n = integer).

In Fig. 2 (a), the (red, Q total = 1) vacuum is seen from the 
q = 0 (yellow) vacuum. A closed domain wall separates these two. 
This wall viewed from the yellow vacuum is symbolized by the 
limegreen color. In Fig. 2 (b), the q = 0 (yellow, Q total = 0) vac-

1 Here, the line is not a mathematical one but has some physical thickness. Thus, 
gauge charges can have hairs but global charges cannot, and metric changes know 
only hairs.

Fig. 2. (a) A walled vacuum (red, qtotal = 1) seen from the q = 0 (yellow) vacuum. 
Inside the wall, the opposite q = 1 (red) vacuum is seen through a crack in the wall. 
This view of the wall is colored limegreen. (b) A walled vacuum (yellow, qtotal = 0) 
seen from the q = 1 (red) vacuum. This view of the wall is colored blue. Dashes rep-
resent closing surfaces and black dots represent particles. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

uum is seen from the q = 1 (red) vacuum. The wall viewed from 
the red vacuum is symbolized by the blue color. In Fig. 2 (a), the 
dashed boundary encloses the walled q = 1 vacuum. A scalar field 
φ in the q = 0 or q = 1 vacua is represented by eiqπ R(x).

Let us illustrate examples in Z2. Then, q can be 0 or 1. For q = 0, 
we use the field VEV φ = 0.2 For a ball of discrete charge q, the 
radius of the ball is determined by minimizing the energy

Eω = E + ω

[
q − 1

2i

∫
d3x (�∗∂t� − �∂t�

∗)
]

, (1)

where ω (with the energy dimension) is the Lagrange multiplier 
and q of the ball can be defined as

q = 1
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∫
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In the evolving Universe, the vacuum inside the ball expands 
such that φ in the red becomes constant. For a spherically sym-
metric R(x), let us parametrize it as

� =
√
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{
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k

0, for r > π
k

(3)

where π/k is the radius of the ball, and � = 0 in the yellow part 
of Fig. 2 (a). So, we obtain

1

2i

∫
(inside dashed)

d3x (�∗∂t� − �∂t�
∗) = 1.

The total charge q inside the dashed surface of Fig. 2 (a) is 1, and 
the dashed string symbolizes this fact.

Definition of charge q by Eq. (2) is not by the Nöther current. 
It is simply defined by the vacuum expectation value (VEV) of the 
phase of a Higgs field �. To relate this charge q to the charge de-
fined by the Nöther current, the t dependence of � is introduced 
as the example in Eq. (3). To make it an integer, the VEV which is 
designed as a constant3 is appropriately chosen. Equation (1) is the 
matching condition to the charge q calculated by the Nöther cur-
rent. Discrete symmetries in the Universe are realized by the VEVs 
of Higgs field � having degenerate minima as shown in Fig. 1. So, 
it is appropriate to figure out the discrete charges in the vacuum 

2 If φ = −v corresponds to q = 0, we add a constant v to simplify the value of φ.
3 In the connected portion in the Universe, the minimum of the potential with a 

fixed value of � is chosen everywhere.
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