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In this letter, we study the charge response from higher derivatives over the background with homo-
geneous disorder introduced by axions. We first explore the bounds on the higher derivatives coupling 
from DC conductivity and the anomalies of causality and instabilities. Our results indicate no tighter con-
straints on the coupling than that over Schwarzschild–AdS (SS–AdS) background. And then we study the 
optical conductivity of our holographic system. We find that for the case with γ1 < 0 and the disorder 
strength α̂ < 2/

√
3, there is a crossover from a coherent to incoherent metallic phase as α̂ increases. 

When α̂ is beyond α̂ = 2/
√

3 and further amplified, a peak exhibits again at low frequency. But it can-
not be well fitted by the standard Drude formula and new formula for describing this behavior shall 
be called for. While for the holographic system with the limit of γ1 → 1/48, the disorder effect drives 
the hard-gap-like at low frequency into the soft gap and suppresses the pronounced peak at medium 
frequency.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The quantum critical (QC) dynamics described by CFT or its 
proximity physics is strongly coupled systems without quasi-
particles descriptions [1] (also refer to [2–10]). In dealing with 
these problems, a controlled manner in traditional field theory can 
not usually be performed. The AdS/CFT correspondence [11–14]
provides valuable lessons to understand such systems by map-
ping certain CFTs to higher dimensional classical gravity. Studying 
the optical conductivity σ(ω/T ) by introducing the probe Maxwell 
field coupled to the Weyl tensor Cμνρσ in the Schwarzschild–AdS 
(SS–AdS) black brane background, we find that the behavior of 
conductivity is similar with one in the superfluid–insulator quan-
tum critical point (QCP) described by the boson Hubbard model 
[15–17]. It provides possible route to access this kind of problems. 
Further, to test the robustness of higher derivative (HD) terms, the 
author of Ref. [18] studies the charge response of a large class of 
allowed HD terms in the SS–AdS geometry and find some inter-
esting results. Of particular interest is that the optical conductivity 
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displays an arbitrarily sharp Drude-like peak and the bounds found 
in [15,19] are violated.

Also, we explore the charge transport with Weyl term in a 
specific thermal state with homogeneous disorder, which is in-
troduced by a pair of spatial linear dependent axionic fields in 
AdS geometry and is away from quantum critical point (QCP), and 
new physics is qualitatively found [20]. Of particular interest is 
that for the positive Weyl coupling parameter γ > 0, the strong 
homogeneous disorder drives the Drude-like peak in QCP state de-
scribed by Maxwell–Weyl system in SS–AdS geometry [15] into 
the incoherent metallic state with a dip, which is away from QCP. 
While an oppositive scenario is found for γ < 0. In addition, the 
particle-vortex duality in the dual field theory induced by the bulk 
electromagnetic (EM) duality related by changing the sign of γ is 
still preserved. Nonetheless, there is still bound for the conductiv-
ity as in [15,19]. In this letter, we study the charge response of a 
large class of HD terms in the specific thermal state with homoge-
neous disorder. The letter is organized as follows. We describe the 
holographic setup for a class of HD theory with homogeneous dis-
order in Section 2. And then the constraints imposing on the HD 
coupling parameters in the Einstein-axions–AdS (EA–AdS) geome-
try are explored in Section 3. In Section 4, we mainly study the 
optical conductivity from HD theory with homogeneous disorder. 
Finally the conclusion and discussion are presented in Section 5.
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2. Holographic setup

A specific thermal excited state with homogeneous disorder can 
be holographically described by the EA theory [21],

S0 =
∫

d4x
√−g

(
R + 6 − 1

2

∑
I=x,y

(∂φI )
2
)

, (1)

where φI = αxI with I = x, y and α being a constant. In the action 
above, there is a negative cosmological constant 
 = −6, which 
supports asymptotically AdS spacetimes.1

The EA action (1) gives a neutral black brane solution [21]

ds2 = 1

u2

(
− f (u)dt2 + 1

f (u)
du2 + dx2 + dy2

)
, (2)

where

f (u) = (1 − u)p(u) , p(u) =
√

1 + 6α̂2 − 2α̂2 − 1

α̂2
u2 + u + 1 .

(3)

u = 0 is the asymptotically AdS boundary while the horizon locates 
at u = 1. Note that we have parameterized the black brane solution 
by α̂ = α/4π T with the Hawking temperature T = p(1)/4π . Al-
though the momentum dissipates due to the break of microscopic 
translational symmetry, the geometry is homogeneous and so we 
refer to this mechanism as homogeneous disorder and α̂ denotes 
the strength of disorder.2

Now, we consider the following action beyond Weyl [18]

S A =
∫

d4x
√−g

(
− 1

8g2
F

Fμν Xμνρσ Fρσ

)
, (4)

where the tensor X is an infinite family of HD terms

X ρσ
μν = I ρσ

μν − 8γ1,1C ρσ
μν − 4γ2,1C2 I ρσ

μν − 8γ2,2C αβ
μν C ρσ

αβ

− 4γ3,1C3 I ρσ
μν − 8γ3,2C2C ρσ

μν

− 8γ3,3C α1β1
μν C α2β2

α1β1
C ρσ

α2β2
+ . . . . (5)

In the equation above, I ρσ
μν = δ

ρ
μ δ σ

ν − δ σ
μ δ

ρ
ν is an identity ma-

trix and Cn = C α1β1
μν C α2β2

α1β1
. . . C μν

αn−1βn−1
. g2

F is an effective di-
mensionless gauge coupling and we set gF = 1 in the numerical 
calculation. The action (4) is constructed in terms of double EM 
field strengths, which is sufficient for linear response, coupled to 
any number of symmetry-allowed curvature tensors, which go be-
yond the Weyl action studied in [15,19,20,34–48]. Note that the X
tensor possesses the following symmetries

Xμνρσ = X[μν][ρσ ] = Xρσμν . (6)

When we set X ρσ
μν = I ρσ

μν , the theory (4) reduces to the standard 
Maxwell theory.

Since the action (4) is an infinite family of n powers of the 
Weyl tensor C , we truncate it to the level n = 2, which is the 6
derivatives and the focus in this paper. On the other hand, since 
the effect of the coupling terms γ1 and γ2 is similar, we mainly 
focus on the term of γ1 through this paper. For convenience, we 
denote γ1,1 = γ and γ2,i = γi (i = 1, 2) in what follows.

1 We have set the AdS radius L = 1 without loss of generality.
2 The other models, for instance [22–33], have also been developed to produce 

the effect of homogeneous disorder.

3. Bounds on the coupling

In this section, we examine the bounds on the coupling over 
the EA–AdS background (2). To this end, we turn on the perturba-
tions of gauge field and write down the corresponding linearized 
perturbative equations in momentum space [15,20]

A′′′
t +

( f ′

f
− X ′

1

X1
+ 2

X ′
3

X3

)
A′′

t

+
(

− p2q̂2 X1

f X3
+ p2ω̂2 X1

f 2 X5
+ f ′ X ′

3

f X3
− X ′

1 X ′
3

X1 X3
+ X ′′

3

X3

)
A′

t = 0 ,

A′′
y +

( f ′

f
+ X ′

6

X6

)
A′

y + p2

f 2

(
ω̂2 X2

X6
− q̂2 f

X4

X6

)
A y = 0 , (7)

where q̂μ = (ω̂, ̂q, 0) are the dimensionless quantities defined as

ω̂ ≡ ω

4π T
= ω

p
, q̂ ≡ q

4π T
= q

p
, p≡ p(1) = 4π T . (8)

Xi , i = 1, . . . , 6, are the matrix elements of X B
A = diag(Xi(u)) with 

A, B ∈ {tx, ty, tu, xy, xu, yu}, which encode the essential informa-
tion of tensor X ρσ

μν . In particular, X1(u) = X2(u) = X5(u) = X6(u)

and X3(u) = X4(u) because of the symmetry of the background 
geometry (2) and the structure of X tensor (5). Note that here we 
only consider the equations for At and A y since A′

t = − q̂ f
ω̂

X5
X3

A′
x

and we have chosen the radial gauge as Au = 0. In addition, the 
equations of EM dual theory can be obtained by letting Xi → X̂i =
1/Xi .

3.1. Bounds from DC conductivity

In [18], it has been found that for the SS–AdS geometry and the 
subspace of γ1 �= 0 but other parameters vanishing, γ1 is uncon-
strained from the anomalies of causality and instabilities. But an 
additional constraint from Reσ(ω) ≥ 0, especially DC conductivity 
being positive, gives γ1 ≤ 1/48. Here we shall further examine this 
bound over EA–AdS geometry from conductivity.

To this end, we write down the expression of DC conductivity 
[15,19,20]

σ0 = √−g gxx
√

−gtt guu X1 X5 |u=1 . (9)

It can be explicitly worked out as up to 6 derivatives

σ0 = 1 − 2

3
γ f ′′(1) −

(4

3
γ1 + 1

9
γ2

)
f ′′(1)2 , (10)

with

f ′′(1) = −2 − 4(−1 − 2α̂2 + √
1 + 6α̂2)

α̂2
. (11)

We can easily find that for arbitrary α̂, the upper bound γ1 = 1/48
preserves for other parameters vanishing. Fig. 1 clearly shows this 
result.

Before closing this subsection, we would like to present some 
comments on the DC conductivity σ0 from 6 derivative term. First, 
similar with the case of 4 derivative term [20], there is a spe-
cific value α̂ = 2/

√
3, for which σ0 is independent of the coupling 

parameter γ1. Second, for the case of 4 derivatives, σ0 is mono-
tonic function of α̂ [20], while for one of 6 derivatives, σ0 is 
non-monotonic and has upper/lower bound setting by σ0 = 1.
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