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Classical radiation reaction is the effect of the electromagnetic field emitted by an accelerated electric 
charge on the motion of the charge itself. The self-consistent underlying classical equation of motion 
including radiation–reaction effects, the Landau–Lifshitz equation, has never been tested experimentally, 
in spite of the first theoretical treatments of radiation reaction having been developed more than a 
century ago. Here we show that classical radiation reaction effects, in particular those due to the near 
electromagnetic field, as predicted by the Landau–Lifshitz equation, can be measured in principle using 
presently available facilities, in the energy emission spectrum of 30-GeV electrons crossing a 0.55-mm 
thick diamond crystal in the axial channeling regime. Our theoretical results indicate the feasibility of the 
suggested setup, e.g., at the CERN Secondary Beam Areas (SBA) beamlines.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Lorentz equation is one of the cornerstones of classical 
electrodynamics and it describes the motion of an electric charge, 
an electron for definiteness (charge e < 0 and mass m), in the pres-
ence of an external, given electromagnetic field [1]. The Lorentz 
equation, however, does not take into account that, as the electron 
is being accelerated by the external field, it emits electromagnetic 
radiation, which in turn alters the trajectory of the electron itself 
(radiation reaction (RR)). The search for the equation of motion 
of an electron moving in a given external electromagnetic field, 
including self-consistently the effects of RR, has already been pur-
sued since the beginning of the 20th century. By starting from the 
Lorentz equation of an electron in the presence of an external elec-
tromagnetic field and of the electromagnetic field produced by the 
electron itself, the so-called Lorentz–Abraham–Dirac (LAD) equa-
tion has been derived [2–4,1,5–8]. After mass renormalization RR 
effects result in two force terms in the LAD equation, one propor-
tional to the Liénard formula for the radiated power and account-
ing for the energy–momentum loss of the electron due to radia-
tion, the “damping term”, and the other one, the “Schott” term, 
related to the electron’s near field [8] and accounting for the work 
done by the field emitted by the electron on the electron itself [9]. 
Unlike the damping term, the Schott term, being proportional to 
the time derivative of the acceleration of the electron, 1) renders 
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the LAD equation a non-Newtonian, third-order time differential 
equation; and 2) allows for unphysical features of the LAD equation 
as the existence of “runaway solutions”, with the electron accel-
eration exponentially diverging in the remote future, even if, for 
example, the external field identically vanishes [1,5–11].

The origin of the inconsistencies of the LAD equation has been 
identified in [5]. The conclusion is that in the realm of classi-
cal electrodynamics, i.e., when quantum effects can be neglected, 
a “reduction of order” can be consistently carried out in the LAD 
equation, resulting in a second-order differential equation, known 
as the Landau–Lifshitz (LL) equation. Moreover, quoting Spohn [12], 
the physical solutions of the LAD equation “are on the critical man-
ifold and are governed there by an effective second-order equa-
tion” which is the LL equation. Finally, the LL equation has been 
also derived from quantum electrodynamics in [13] (see also [14]).

The rapid progress of laser technology has renewed the in-
terest in the problem of RR as the strong electromagnetic fields 
produced by lasers can violently accelerate the electron and conse-
quently prime a substantial emission of electromagnetic radiation. 
Correspondingly, a large number of setups and schemes have been 
recently proposed to measure classical RR effects in electron-laser 
interaction [15–20] (we refer to the review [10] for previous pro-
posals). However, experimental challenges either in the detection 
of relatively small RR effects or in the availability of sufficiently 
strong lasers has prevented so far any experimental test of the LL 
equation. Moreover, since RR effects are larger for ultrarelativistic 
electrons, reported laser-based experimental tests of the LL equa-
tion turn out to be sensitive mainly to the damping term in the LL 
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equation, which has the most favorable dependence on the elec-
tron Lorentz factor.

In the present Letter we adopt a different perspective and put 
forward a presently feasible experimental setup to measure classi-
cal RR effects on the radiation field, generated in the interaction of 
ultrarelativistic electrons with an aligned crystal. The experiment 
can already be performed at, e.g., the CERN Secondary Beam Areas 
(SBA) beamlines. In fact, in the proposed setup 30-GeV electrons 
impinge into a 0.55-mm thick diamond crystal and emit a sig-
nificant amount of radiation due to axial channeling [21–24]. Our 
numerical simulations indicate that in this regime RR effects sub-
stantially alter the electromagnetic emission spectrum. Moreover, 
unlike experimental proposals employing lasers, the distinct struc-
ture of the electric field of the crystal at axial channeling renders 
the emission spectrum more sensitive to a term in the LL equation 
originating from the controversial Schott term in the LAD equation. 
As we will see below, this term depends in general on the space-
time derivatives of the background field. This feature makes our 
setup prominent also with respect to synchrotron facilities where 
the electron dynamics is dominated by the damping term. We also 
mention that at an electron energy ε0 = 30 GeV and for a typi-
cal synchrotron radius R = 1 km, the relative electron energy loss 
per turn is �ε/ε0 = 8.9 × 10−5ε0[GeV]3/R[m] = 2.4 × 10−3 [25], 
which would induce too small effects on the emitted radiation to 
be measured. In addition, in order for the synchrotron to operate 
during many turns, the electron energy loss has to be precisely 
compensated preventing again any possibility of “accumulating” 
and measuring RR effects on the emitted radiation.

2. The physical model

When a high-energy electron impinges onto a single crystal 
along a direction of high symmetry, its motion can become trans-
versely bound and its dynamics determined by a coherent scat-
tering in the collective, screened field of many atoms aligned 
along the direction of symmetry (axial channeling) [21–24]. In 
this regime the electron experiences an effective potential in the 
transverse directions (continuum potential), resulting from the av-
erage of the atomic potential along the direction of symmetry. For 
the sake of simplicity, in the present and in the next section we 
assume that the atomic potential is due to a single string. By indi-
cating as z the direction corresponding to the symmetry axis of the 
crystal and by ρ = (x, y) the coordinates in the transverse plane, 
with the atomic string crossing this plane at ρ = 0, the continuum 
potential �(ρ) depends only on the distance ρ = |ρ| and it can be 
approximated as [23]:

�(ρ) = �0

[
ln

(
1 + 1

�2 + η

)
− ln

(
1 + 1

�2
c + η

)]
, (1)

where � = ρ/as and �c = ρc/as . Here, the parameters �0, ρc , η, 
and as depend on the crystal and ρ ≤ ρc . A convenient choice to 
investigate classical RR effects is diamond, with, e.g., the 〈111〉 as 
symmetry axis and for which �0 = 29 V, ρc = 0.765 Å, η = 0.025, 
and as = 0.326 Å. In fact, the relatively low value of �0 as com-
pared to other crystals allows one to neglect quantum effects 
also at relatively high electron energies. The depth �M = �(0)

of the potential in diamond is such that U M = U (0) = −103 eV, 
where U (ρ) = e�(ρ) is the electron potential energy (units with 
h̄ = c = 1 and α = e2 ≈ 1/137 are employed throughout).

In general, the channeling regime of interaction features ultra-
strong electromagnetic fields, which can lead to substantial en-
ergy loss of the radiating electron. In order for quantum effects 
to be negligible, we require that χ = γ0 E/Ecr � 1 [23], where 
γ0 is the initial Lorentz factor of the electron, E is a measure of 
the amplitude of the electric field E(ρ) = −∇�(ρ) = (2�0/as)�/

[(η + �2 + (η + �2)2] in the crystal, and Ecr = m2/|e| = 1.3 ×
1016 V/cm is the critical electric field of QED. By employing E ∼
�M/ρc as an estimate of the electric field amplitude E , it is 
χ = 1.5 × 10−5ε0[GeV]|U M [eV]|/ρc[Å].

In the classical regime χ � 1 the electron dynamics includ-
ing RR effects is described by the LL equation [5]. The LL equation 
for an electron with arbitrary momentum p(t) = mγ (t)β(t), with 

γ (t) = ε(t)/m = 1/

√
1 − β2(t) and β(t) = ṙ(t) = dr(t)/dt , reads:

dp

dt
= eE + 2

3
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m
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m
γ 2[E2 − (β · E)2]β

}
.

(2)

Here the first two terms of the RR force originate from the Schott 
term in the LAD equation whereas the last “damping” one corre-
sponds to the Liénard formula. Unlike the first “derivative” term, 
however, the second term of the RR force is strictly related to the 
damping one as only their sum ensures that the on-shell condition 
ε(t) = √

m2 + p2(t) is preserved during the electron motion.
Now, we assume that the crystal extends from z = 0 to z = L

and that at the initial time t = 0, the electron’s position and ve-
locity are r0 = (x0, 0, 0), with 0 < x0 ≤ ρc , and β0 = (0, 0, βz,0), 
respectively (ε0 = mγ0 = m/

√
1 − β2

z,0). With these initial condi-

tions, due to the symmetry of the potential �(ρ), it is y(t) = 0
and E y(ρ) = 0 along the electron trajectory. Thus, Eq. (2) substan-
tially simplifies and only the equation

dβx

dt
= −

(
Fx

ε
+ 2

3

e2

m2

dFx

dx
βx

)
(1 − β2

x ), (3)

for βx(t) is needed below, with Fx(x) = |e|Ex(x, 0).
If one first neglects RR, the total energy ε(t) + U (|x(t)|) is a 

constant of motion. In the ultrarelativistic regime γ0 	 1 of inter-
est here and for typical crystal parameters it results |βx(t)| � 1, 
such that ε(t) ≈ ε0[1 + β2

x (t)/2] (see, e.g., [21–23]). Indeed, en-
ergy conservation implies that |βx(t)| ≤ √

2|U M − U (x0)|/ε0 � 1
(recall that |U (ρ)| ∼ 100 eV [22,23]). Finally, with the consid-
ered initial conditions, the quantity βx(t) is periodic in time, with 
period T0 = √

8ε0
∫ x0

0 dx/
√|U (x) − U (x0)| and angular frequency 

ω0 = 2π/T0 [22].

3. Analytical results

The considerations above based on the single-string approxi-
mation allow us to evaluate the effects of RR on the electron 
dynamics analytically. In fact, as it can be verified a posteriori, it 
is safe to assume that |βx(t)| � 1 and that βz(t) ≈ 1 also including 
RR. Thus, by multiplying Eq. (2) by px(t) and by neglecting correc-
tions proportional to β2

x (t) ∼ |U M |/ε0, it is easy to prove that (see 
also [5])

ε(t) = ε0

1 + (2/3)α(γ0/m3)
∫ t

0 dt′ F 2
x (x(t′))

, (4)

where the integral is performed along the electron trajectory. In 
order to get an analytical insight on the motion of the electron, we 
assume here that |x(t)| � as

√
η, such that Fx(x) ≈ F0x/as

√
η and 

dFx(x)/dx ≈ F0/as
√

η, where F0 = |e|E0 = 2|U0|/as
√

η, with U0 =
e�0 (U0 = −29 eV for diamond). Equation (3) with 1 − β2

x (t) ≈ 1
and Eq. (4) show that the electron dynamics along the x direction 
is characterized by three time scales: one, T0 ≈ 2π/

√
F0/

√
ηε0as , 

proper of the Lorentz dynamics and two additional,
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