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The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure 
where p is conjugate momentum of x. Moreover, it leads to T S on the horizon of a black hole. Here 
T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize 
this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the 
entropy of the horizon is quantized. This analysis holds for any order of Lanczos–Lovelock gravity. For 
general relativity, the area spectrum is consistent with Bekenstein’s observation. This provides a more 
robust confirmation of this earlier result as the calculation is based on the direct quantization of the 
Hamiltonian in the sense of usual quantum mechanics.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Quantum mechanically, black holes are thermodynamic objects 
which have temperature [1] as well as entropy [2]. The exact ex-
pressions for these entities have been obtained by semi-classical 
treatment. In the absence of a true “quantum gravity” theory, the 
precise microscopic origin of entropy is unknown. Since there is 
no such complete theory,1 we can only do semi-classical computa-
tions. One of the earlier attempts to describe these microstates, 
which are responsible for horizon entropy, originated from the 
seminal works of Bekenstein [2]. He showed that when a neutral 
particle is swallowed by a Kerr black hole, the lower bound on the 
increment of the horizon area is

(�A)min = 8π l2p , (1)

when the particle has a finite size – not smaller than Compton 
wavelength. Here lp is the Planck length. After Bekenstein, the 
same was calculated for the assimilation of a charged particle [5]
and it was found to have a similar Planck length square nature, but 
with a different numerical factor.

Even now, people are still trying to understand and find the im-
plications of this result. One of the most important consequences 
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ory [4]. But none of them are self-sufficient.

is – it leads to the quantization of horizon area. A much more 
sophisticated calculation by Bekenstein and Mukhanov [6] yielded 
the area spectrum as 4l2p ln k with k = 2. An exactly identical ex-
pression was later derived by using quasinormal modes, except 
with k = 3 [7,8]. The importance of this result are as follows. It 
was found that this is consistent with the Gibbs’ paradox [9] and 
also that the value of Immirzi parameter, in the context of Loop 
quantum gravity, can be fixed [10]. But unfortunately the deriva-
tion by quasinormal modes encountered a problem. Maggiore [11]
observed that the imaginary part of the ringing frequency domi-
nates compared to the real part in higher n limit where n is an 
integer. Now since the whole calculation is semi-classical, which is 
reliable at large n, one should take the imaginary part in the com-
putation. Then this leads to the old result by Bekenstein: quantum 
of area is 8π l2p . Consequently, several attempts [12–23] have been 
made to find the spectrum of area or entropy. It turned out that 
the quantum of entropy is much more natural than that of area 
[15,20]. In all cases, for Einstein’s gravity, one finds that the spac-
ing is given by (1).

Now it is quite evident that the semi-classical calculation is 
mostly in favor of Eq. (1). In this paper we make another attempt 
to quantize black hole entropy and area. The basic idea follows 
from an earlier result by one of the authors [24]. It has been ob-
served that the surface part of the Einstein–Hilbert action has a 
structure like xp where x and p are coordinate and conjugate mo-
mentum, respectively. Also the evaluation of the surface term on 
the horizon leads to the surface Hamiltonian which is the prod-
uct of entropy and temperature. Moreover, one can identify that 
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the entropy is equivalent to x while the temperature plays the 
role of conjugate momentum p (for details, see [24]). So every-
thing reduces to a classical Hamiltonian H = xp. An extension to 
Lanczos–Lovelock gravity theory has also been done [25] and here 
also same conclusion was drawn.

In the present work, we discuss the quantization of xp Hamil-
tonian. The standard quantization procedure leads to some confu-
sions. The key point is that, the quantum Hamiltonian Ĥ = x̂p̂ is 
not hermitian. So one might think that, a simple symmetric or-
dering of Ĥ will solve the problem. Unfortunately, there are few 
subtle points in this apparently simple program. As we shall see, 
self-adjoint extension of the Hamiltonian is necessary and this will 
naturally lead to boundary conditions on the wave function. Our 
main finding is that, in the context of a black hole, when boundary 
condition is coupled with first law of thermodynamics, it naturally 
gives area quantization. We show that the spacing is consistent 
with Bekenstein’s old result. For GR it leads to Eq. (1).

Thus, we make a direct quantization of entropy/area, unlike the 
earlier attempts, in the sense that the surface Hamiltonian (prod-
uct of horizon entropy and temperature for a black hole) is quan-
tized in the language of usual quantum mechanics. Therefore our 
method is completely new and gives a direct evidence of quantiza-
tion of entropy. The most interesting outcome is that the evaluated 
result matches with that from the earlier “indirect” calculations. 
Hence we reconfirm Bekenstein’s original value of Eq. (1), obtained 
by semi-classical approach.

2. Surface Hamiltonian: a brief discussion

In this section, we shall briefly discuss about the surface part of 
the action of a gravitational theory so that a new reader can find 
the paper self-sufficient. Calculating this for a metric on the hori-
zon, it will be shown that it has a thermodynamic interpretation. 
From there the surface Hamiltonian will be identified. Moreover, 
we shall discuss why such a Hamiltonian has xp structure. Both the 
GR as well as more general theory like Lanczos–Lovelock gravity 
will be our attention. Here a summary of the required informa-
tion, for clarity, will be introduced without any detailed calcula-
tion. An interested reader can discuss with the relevant references 
(e.g. [24,25]) for explicit analysis.

Very recently it has been shown that the thermodynamic struc-
ture of the gravitational theories can be discussed in terms of two 
variables. For GR these are given by f ab and Nc

ab which are related 
to the usual variables by the following relations:

f ab = √−g gab ;
Nc

ab = −�c
ab + 1

2

(
�d

adδ
c
b + �d

bdδ
c
a

)
. (2)

Most notable point about these variables is that Nc
ab is the con-

jugate momentum of f ab . Before going into the main idea, let us 
review some salient points. It is well known that, the Einstein–
Hilbert (EH) Lagrangian i.e.

√−g R can be divided into two parts: 
one is quadratic in �a

bc and the other one is a total derivative 
part, we call them as bulk and surface parts respectively. Although 
these are not scalars individually, there are some important fea-
tures associated with them. The bulk part alone gives Einstein’s 
equations of motion without suffering any inconsistency as one 
does not need to impose vanishing of the both variation of metric 
and derivative of metric at the boundary; here one just imposes 
the vanishing of δgab at the boundary (see p. 242 of [26]). On the 
other hand, the surface part is given by

Lsur = 2

16πG
∂c

[
Q bcd

a �a
bd

]
, (3)

where Q bcd
a = 1/2(δc

a gbd − δd
a gbc). This term when calculated on 

the r = constant surface for a static black hole, the action gives 
entropy in the near horizon limit. In this case the time integra-
tion is taken within the periodicity of Euclidean time (see p. 663 
of [26] for details). Of course, if one computes the total EH action 
for a spherically symmetric static metric it has a thermodynamical 
structure like S − E/T where E is identifies as the black hole en-
ergy [27]. Moreover the surface part of the gravitational action can 
be expressed as

Asur = − 1

16πG

∫
d4x∂c

(
f ab Nc

ab

)
. (4)

Therefore the surface Lagrangian has a structure like ∂(xp) with 
x ≡ f ab and p ≡ Nc

ab .
Now the calculation of this action on the null surface for static 

spacetime leads to

Asur = − 1

16πG

∫
dtd2x⊥nc f ab Nc

ab = −
∫

dtT S (5)

where nc is the normal to the surface, x⊥ refers to the trans-
verse coordinates and T = h̄κ/2π and S = A/4Gh̄ = A/4l2p are 
the horizon temperature and entropy, respectively with κ be-
ing the surface gravity and A is the area of the horizon. There-
fore the surface Hamiltonian is identified as Hsur = −∂Asur/∂t =
(1/16πG) 

∫
d2x⊥nc f ab Nc

ab = T S .2 From this we can immediately re-
alize that the present Hamiltonian has xp structure. More precisely, 
Hamiltonian density (Hamiltonian per unit transverse area), which 
is temperature times entropy density (entropy per unit transverse 
area) has this structure. Moreover, among the two thermodynam-
ical variables (T and S), one of them plays the role of x while 
the other one is p. Now to properly identify these variables we 
can take the help of the following analysis. It has also been ob-
served that if we take a variation of the Hamiltonian; i.e. δHsur =
1/16πG

[
(δ f ab)(nc Nc

ab) +( f ab)δ(nc Nc
ab)

]
and calculate them on the 

horizon, then these two parts lead to
1

16πG

∫
d2x⊥(δ f ab)(nc Nc

ab) = T δS ;
1

16πG

∫
d2x⊥( f ab)δ(nc Nc

ab) = SδT . (6)

Therefore one can say that S ≡ x while T is the conjugate mo-
mentum of S; i.e. T ≡ p. The details of these discussion can be 
followed from [24]. Now since the action is given by (5) and T , S
are conjugate variables, in classical mechanics we have the follow-
ing Poisson’s bracket:

{S, T }PB = 1 . (7)

It should be mentioned that this feature is not restricted to GR; 
rather this is much more general. The same has also been con-
cluded for a general Lanczos–Lovelock gravity. For that we refer to 
[25] for the readers. In this general case the conjugate variables 
are f̃ ab = f ab and Ñc

ab = Q cd
ae �e

bd + Q cd
be �e

ad where Q ab
cd = (1/m)P ab

cd
with P ab

cd = ∂Lm/∂ Rcd
ab and m is the order of the Lanczos–Lovelock 

Lagrangian Lm . The surface action is exactly in similar form with 
the un-tilde variables are replaced by tilde variables. Calculation of 
it on the horizon leads to identical results like the GR case with 
the entropy is properly defined in terms of the relevant compo-
nent of Q ab

cd . Hence we infer that the structure of surface Hamiltonian 

2 It may be mentioned that the same T S Hamiltonian can also be obtained from 
the Gibbons–Hawking–York surface term [28], but it is not known if it has similar 
xp structure. Therefore we restrict our discussion within the non-covariant form of 
the surface part of the main gravitational action.
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