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We present explicit expressions of the thermodynamic volume inside and outside the cosmological 
horizon of Eguchi–Hanson solitons in general odd dimensions. These quantities are calculable and well-
defined regardless of whether or not the regularity condition for the soliton is imposed. For the inner 
case, we show that the reverse isoperimetric inequality is not satisfied for general values of the soliton 
parameter a, though a narrow range exists for which the inequality does hold. For the outer case, we find 
that the mass Mout satisfies the maximal mass conjecture and the volume is positive. We also show that, 
by requiring Mout to yield the mass of dS spacetime when the soliton parameter vanishes, the associated 
cosmological volume is always positive.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Understanding black holes as thermodynamic systems is a sub-
ject that continues to yield new insights into gravitational physics, 
providing us with important clues as to the nature of quantum 
gravity. Asymptotically Anti de-Sitter (AdS) black holes have been 
of particular interest in recent years, in part because of their sig-
nificance in various proposed gauge-gravity dualities, but also be-
cause they have been shown to exhibit thermodynamic behaviour 
analogous to that in everyday life, a subject known as Black Hole 
Chemistry [1].

In Black Hole Chemistry the cosmological constant � is re-
garded as a thermodynamic variable, extending the phase space of 
black hole thermodynamics [2]. The mass of the black hole can be 
understood as enthalpy [3] and the cosmological constant as pres-
sure, with a conjugate thermodynamic volume V [3–18]. From this 
perspective one can show that the celebrated Hawking–Page phase 
transition [19] can be understood as being analogous to a solid/liq-
uid phase transition [1], and more generally that the 4-dimensional 
Reissner–Nordström AdS black hole can be interpreted as a Van 
der Waals fluid with the same critical exponents [13]. Along with 
more general Van der Waals behaviour with standard critical expo-
nents [14,20–36], other ‘chemical’ black hole behaviour was subse-
quently discovered, such as reentrant phase transitions [37], tricrit-
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ical points [38], Carnot cycles [39], isolated critical points [40,41], 
extensions to black rings [42], and superfluidity [43].

The role of the thermodynamic volume V is not yet fully un-
derstood. It was originally conjectured to satisfy a relation known 
as the Reverse Isoperimetric Inequality [42,44], which states that the 
isoperimetric ratio

R =
(

(D − 1)V

ωD−2

) 1
D−1 (ωD−2

A

) 1
D−2

(1.1)

always satisfies R ≥ 1, where A is the horizon area, and ωd stands 
for the area of the space orthogonal to constant (t, r) surfaces. 
Physically it implies, for example, that the black hole of given 
“volume” V with maximal entropy is the Schwarzschild–AdS black 
hole. However a class of black holes has recently been found that 
violates this conjecture [45,46], necessitating further investigation 
of the role and meaning of the volume [47]. The relationship of V
to other proposed notions of volume [48,49] is an ongoing subject 
of investigation.

Our knowledge of thermodynamic volume, and more gener-
ally the thermodynamic behaviour of asymptotically de Sitter (dS) 
black holes, for which � > 0, is significantly more sparse [47,
50–55]. Yet their importance to cosmology and to a posited du-
ality between gravity in de Sitter space and conformal field theory 
[56] make them important objects of investigation. However this 
is a complex problem, since the absence of a Killing vector that 
is everywhere timelike outside the black hole horizon renders a 
good notion of the asymptotic mass questionable. Furthermore, the 
presence of both a black hole horizon and a cosmological hori-
zon yields two distinct temperatures, suggesting that the system is 
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in a non-equilibrium state. This in turn leads to some ambiguity 
in interpreting the thermodynamic volume, since distinct volumes 
can be associated with each horizon. In all known examples the 
reverse isoperimetric inequality R ≥ 1 holds separately for each; 
however if the volume is taken to be the naive geometric volume 
in between these horizons then the isoperimetric inequality holds 
[57].

It would be preferable to study the ‘chemistry’ of cosmologi-
cal horizons in isolation. For this we need a class of solutions that 
are not of constant curvature and that have only a cosmological 
horizon. Fortunately a broad class of such solutions exists: Eguchi–
Hanson de Sitter solitons [58].

The Eguchi–Hanson (EH) metric is a self-dual solution of the 
four-dimensional vacuum Euclidean Einstein equations [59]. It has 
odd-dimensional generalizations that were discovered few years 
ago [58] in Einstein gravity with a cosmological constant. They 
are referred to as the Eguchi–Hanson solitons. For � < 0 they 
are horizonless solutions that in five dimensions are asymptotic 
to AdS5/Z p (p ≥ 3) and have Lorentzian signature, yielding a non-
simply connected background manifold for the CFT boundary the-
ory [60]. Solutions in higher dimensions have a more complicated 
asymptotic geometry. For � > 0 these solutions in any odd dimen-
sion have a single cosmological horizon, by which we mean that 
they have a Killing vector ∂/∂t that becomes spacelike at suffi-
ciently large distance from the origin. Upon taking the mass to be 
the conserved quantity associated with this Killing vector at fu-
ture infinity, and computing it using the counterterm method [61], 
these solutions all satisfy a maximal mass conjecture [62], whose 
implication is that they all have mass less than that of pure de 
Sitter spacetime with the same asymptotics.

In this paper we study the Eguchi–Hanson de Sitter (EHdS) soli-
tons in the context of extended phase space thermodynamics. In 
this framework, we consider the cosmological constant as a ther-
modynamic variable equivalent to the pressure in the first law 
where

P = − �

8πG
(1.2)

though for � > 0 this quantity is negative and so is perhaps best 
referred to as a tension. Noting this, we shall continue to refer to 
P as pressure; its corresponding conjugate is the thermodynamic 
volume V and is defined from geometric arguments [57]. It en-
sures the validity of the extended first law

δM − T dS − V δP = 0 (1.3)

and (consistent with Eulerian scaling) renders the Smarr formula 
valid:

(d − 2)M − (d − 1)T S + 2V P = 0 (1.4)

where the spacetime dimension is given by (d + 1).
Motivated by the above, we use the Eguchi–Hanson solitons in 

de Sitter space to investigate their thermodynamics and cosmolog-
ical volume in the context of extended phase space. The particular 
advantage afforded by these solutions is that, unlike the situation 
with de Sitter black holes, thermodynamic equilibrium is satis-
fied. We find explicit expressions for the thermodynamic volume 
inside and outside the cosmological horizon. For the inner case, 
the reverse isoperimetric inequality is satisfied only for a small 
range of a >

√
3/4� when a regularity condition for the soliton 

is not satisfied. For the outer case, an important role is played by a 
Casimir-like term that appears as an arbitrary constant in the first 
law and Smarr relation. We compare our results to those obtained 
using the counterterm method [58] and we find that they match. 
We note that for this case the mass is always smaller than maxi-
mal mass given by the Casimir term and that the thermodynamic 
volume is always positive if the regularity condition is applied.

The outline of our paper is as follows: in the next section we 
introduce the EH Solitons in odd dimensions. We briefly discuss 
general considerations of their thermodynamics in section 3. In 
section 4, we make use of the first law and Smarr relation to 
compute the mass and thermodynamic volume of these solutions 
inside and outside the cosmological horizon of dS space. We show 
that explicit expressions for the two parameters can be found in 
general odd dimensions. We briefly summarize our results in a 
concluding section.

2. EHdS solitons

EHdS solitons [58,60] in general odd (d + 1) dimensions are 
exact solutions to the Einstein equations with � > 0, and have 
metrics of the form

ds2 = −g(r)dt2 +
(

2r

d

)2

f (r)

[
dψ +

k∑
i=1

cos(θi)dφi

]2

+ dr2

g(r) f (r)
+ r2

d

k∑
i=1

d�2
2(i) (2.1)

in d = 2k + 2 dimensions, where the metric functions are given by

g(r) = 1 − r2

�2
, f (r) = 1 −

(a

r

)d
(2.2)

with

d�2
2(i) = dθ2

i + sin2(θi)dφ2
i (2.3)

and

� = +d(d − 1)

2�2
(2.4)

parametrizing the positive cosmological constant.
The radial coordinate r ≥ a; for r < a the metric changes sig-

nature, indicative of its solitonic character. There is a cosmological 
horizon at r = �. Constant (t, r) sections consist of the fibration of 
a circle over a product of k 2-spheres. Generalizations to Gauss–
Bonnet gravity [63] and to spacetimes with more general base 
spaces [64] exist but we shall not consider these solutions here.

For � → ∞, the metric (2.1) becomes

ds2 =
(

2r

d

)2 (
1 −

(a

r

)d
)[

dψ +
k∑

i=1

cos(θi)dφi

]2

+ dr2

1 − ( a
r

)d
+ r2

d

k∑
i=1

d�2
2(i) (2.5)

for a constant t = hypersurface. This class of metrics can be re-
garded as d-dimensional generalizations of the original [59] d = 4
Eguchi–Hanson metric.

In general, the metric (2.1) will not be regular unless some con-
ditions are imposed to eliminate the singularities. Noting that a 
constant (t, r) section has the form

ds2 = F (r)

[
dψ +

k∑
i=1

cos(θi)dφi

]2

+ dr2

G(r)
(2.6)

where F (r) =
(

2r
d

)2
f (r) and G(r) = f (r)g(r), regularity requires 

the absence of conical singularities. This implies that the periodic-
ity of ψ at infinity must be an integer multiple of its periodicity 
as r → a. Consequently
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