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A search for heavy resonances decaying to a Higgs boson and a vector boson is presented. The analysis 
is performed using data samples collected in 2015 by the CMS experiment at the LHC in proton–proton 
collisions at a center-of-mass energy of 13 TeV, corresponding to integrated luminosities of 2.2–2.5 fb−1. 
The search is performed in channels in which the vector boson decays into leptonic final states (Z → νν , 
W → �ν , and Z → ��, with � = e, μ), while the Higgs boson decays to collimated b quark pairs detected 
as a single massive jet. The discriminating power of a jet mass requirement and a b jet tagging algorithm 
are exploited to suppress the standard model backgrounds. The event yields observed in data are 
consistent with the background expectation. In the context of a theoretical model with a heavy vector 
triplet, a resonance with mass less than 2 TeV is excluded at 95% confidence level. The results are also 
interpreted in terms of limits on the parameters of the model, improving on the reach of previous 
searches.

© 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The discovery of a Higgs boson H at the CERN LHC [1–3] sug-
gests that the standard model (SM) mechanism that connects elec-
troweak (EW) symmetry breaking to the generation of particle 
masses is largely correct. However, the relatively light value of the 
Higgs boson mass mH = 125.09 ± 0.21 (stat) ± 0.11 (syst) GeV [4–7]
leaves the hierarchy problem unsolved [8], pointing to phenom-
ena beyond the SM, which could be unveiled by searches at the 
LHC. Many theories that incorporate phenomena beyond the SM 
postulate the existence of new heavy resonances coupled to the 
SM bosons. Among them, weakly coupled spin-1 Z′ [9,10] and W′
models [11] or strongly coupled Composite Higgs [12–14], and Lit-
tle Higgs models [15–17] have been widely discussed.

A large number of models are generalized in the heavy vec-
tor triplet (HVT) framework [18], which introduces one neutral 
(Z′) and two electrically charged (W′) heavy resonances. The HVT 
model is parametrized in terms of three parameters: the strength 
gV of a new interaction; the coupling cH between the heavy vector 
bosons, the Higgs boson, and longitudinally polarized SM vector 
bosons; and the coupling cF between the HVT bosons and the SM 
fermions. In the HVT scenario, model B with parameters gV = 3, 
cH = 0.976, and cF = 1.024 [18] is used as the benchmark. With 
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these values, the couplings of the heavy resonances to fermions 
and to SM bosons are similar, yielding a sizable branching frac-
tion for the heavy resonance decay into a SM vector boson W or Z
(generically labeled as V) and a Higgs boson [18].

Bounds from previous searches [19–22] require the masses of 
these resonances to be above 1 TeV in the HVT framework. In this 
mass region, the two bosons produced in the resonance decay 
would have large Lorentz boosts in the laboratory frame. When 
decaying, each boson would generate a pair of collimated parti-
cles, a distinctive signature, which can be well identified in the 
CMS experiment. Because of the large predicted branching frac-
tion, the decay of high-momentum Higgs bosons to bb final states 
is considered. The Higgs boson is reconstructed as one unresolved 
jet, tagged as containing at least one bottom quark. Backgrounds 
from single quark and gluon jets are reduced by a jet mass re-
quirement. In order to discriminate against the large multijet back-
ground, the search is focused on the leptonic decays of the vector 
bosons (Z → νν , W → �ν , and Z → ��, with � = e, μ).

The main SM background process is the production of vector 
bosons with additional hadronic jets (V+jets). The estimation of 
this background is based on events in signal-depleted jet mass 
sidebands, with a transfer function, derived from simulation, from 
the sidebands to the signal-enriched region. Top quark production 
also accounts for a sizable contribution to the background in 1� fi-
nal states, and is determined from simulation normalized to data 
in dedicated control regions. Diboson production processes, includ-
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ing pairs of vector bosons (VV) and the SM production of a Higgs 
boson and vector boson (VH), represent minor contributions to the 
overall background and are estimated from simulation. A signal 
would produce a localized excess above a smoothly falling back-
ground in the distribution of the kinematic variable mVH, whose 
definition and relationship to the resonance mass mX depends on 
the final state. Results are interpreted in the context of HVT mod-
els in the benchmark scenario B [18].

2. Data and simulated samples

The data samples analyzed in this study were collected with the 
CMS detector in proton–proton collisions at a center-of-mass en-
ergy of 13 TeV during 2015. The samples correspond to integrated 
luminosities of 2.2–2.5 fb−1, depending on the final state consid-
ered.

Simulated signal events are generated at leading order (LO) ac-
cording to the HVT model B [18] with the MadGraph5_amc@nlo

v5.2.2.2 matrix element generator [23]. The Higgs boson is re-
quired to decay into a bb pair, and the vector boson into leptons. 
A contribution from vector boson decays into τ leptons is also in-
cluded through subsequent decays to e or μ that satisfy the event 
selection. Different mX hypotheses in the range 800 to 4000 GeV 
are considered, assuming a resonance width narrow enough (0.1% 
of the resonance mass) to be negligible with respect to the exper-
imental resolution. This approximation is valid in a large fraction 
of the HVT parameter space, and will be discussed in Section 8.

The analysis utilizes a set of simulated samples to character-
ize the main SM background processes. Samples of V+jets events 
are produced with MadGraph5_amc@nlo and normalized to the 
next-to-next-to-leading-order (NNLO) cross section, computed us-
ing fewz v3.1 [24]. The V boson pT spectra are corrected to ac-
count for next-to-leading-order (NLO) QCD and EW contributions 
[25]. Top quark pair production is simulated with the NLO powheg

v2 generator [26–28] and rescaled to the cross section value com-
puted with Top++ v2.0 [29] at NNLO. Minor SM backgrounds, 
such as VV and VH production, and single top quark (t+X) pro-
duction in s-channel, t-channel, and in tW associated production, 
are simulated at NLO with MadGraph5_amc@nlo. Multijet produc-
tion is simulated at leading order with the same generator.

Parton showering and hadronization processes are simulated by 
interfacing the event generators to pythia 8.205 [30,31] with the 
CUETP8M1 [32,33] tune. The NNPDF 3.0 [34] parton distribution 
functions (PDFs) are used to model the momentum distribution of 
the colliding partons inside the protons. Generated events, includ-
ing additional proton–proton interactions within the same bunch 
crossing (pileup) at the level observed during 2015 data taking, 
are processed through a full detector simulation based on Geant4 
[35] and reconstructed with the same algorithms used for data.

3. CMS detector

The central feature of the CMS detector is a superconducting 
solenoid of 6 m internal diameter. Within the solenoid volume are 
a silicon pixel and strip tracker, a lead tungstate crystal electro-
magnetic calorimeter (ECAL), and a brass and scintillator hadron 
calorimeter (HCAL), each composed of a barrel and two endcap 
sections. Forward calorimeters extend the pseudorapidity [36] cov-
erage provided by the barrel and endcap detectors. Muons are 
measured in gas-ionization detectors embedded in the steel flux-
return yoke outside the solenoid.

The silicon tracker measures charged particles within the pseu-
dorapidity range |η| < 2.5. It consists of 1440 silicon pixel and 
15 148 silicon strip detector modules and is located in the 3.8 T 

field of the solenoid. For nonisolated particles of transverse mo-
mentum 1 < pT < 10 GeV and |η| < 1.4, the track resolutions are 
typically 1.5% in pT and 25–90 (45–150) μm in the transverse (lon-
gitudinal) impact parameter [37]. The ECAL provides coverage up 
to |η| < 3.0. The dielectron mass resolution for Z → ee decays 
when both electrons are in the ECAL barrel is 1.9%, and is 2.9% 
when both electrons are in the endcaps. The HCAL covers the 
range of |η| < 3.0, which is extended to |η| < 5.2 through for-
ward calorimetry. Muons are measured in the pseudorapidity range 
|η| < 2.4, with detection planes made using three technologies: 
drift tubes, cathode strip chambers, and resistive-plate chambers. 
Combining muon tracks with matching tracks measured in the sil-
icon tracker results in a pT resolution of 2–10% for muons with 
0.1 < pT < 1 TeV [38].

The first level (L1) of the CMS trigger system, composed of cus-
tom hardware processors, uses information from the calorimeters 
and muon detectors to select the most interesting events in a fixed 
time interval of less than 4 μs. The high-level trigger (HLT) proces-
sor farm further decreases the event rate from around 100 kHz to 
about 1 kHz, before data storage.

A detailed description of the CMS detector, together with a def-
inition of the coordinate system used and the relevant kinematic 
variables, can be found in Ref. [36].

4. Event reconstruction

In CMS, a global event reconstruction is performed using a 
particle-flow (PF) algorithm [39,40], which uses an optimized com-
bination of information from the various elements of the CMS 
detector to reconstruct and identify individual particles produced 
in each collision. The algorithm identifies each reconstructed par-
ticle either as an electron, a muon, a photon, a charged hadron, or 
a neutral hadron.

The PF candidates are clustered into jets using the anti-kT algo-
rithm [41] with a distance parameter R = 0.4 (AK4 jets) or R = 0.8
(AK8 jets). In order to suppress the contamination from pileup, 
charged particles not originating from the primary vertex, taken 
to be the one with the highest sum of p2

T over its constituent 
tracks, are discarded. The residual contamination removed is pro-
portional to the event energy density and the jet area estimated 
using the FastJet package [42,43]. Jet energy corrections, extracted 
from simulation and data in multijet, γ +jets, and Z+jets events, 
are applied as functions of the transverse momentum and pseu-
dorapidity to correct the jet response and to account for residual 
differences between data and simulation. The jet energy resolu-
tion amounts typically to 5% at 1 TeV [44]. Jets are required to 
pass an identification criterion, based on the jet composition in 
terms of the different classes of PF candidates, in order to remove 
spurious jets arising from detector noise. The pruning algorithm 
[45], which is designed to remove contributions from soft radia-
tion and additional interactions, is applied to AK8 jets. The pruned 
jet mass mj is defined as the invariant mass associated with the 
four-momentum of the pruned jet, after the application of the jet 
energy corrections [44]. The AK8 jets are split into two subjets us-
ing the soft drop algorithm [46,47].

The combined secondary vertex algorithm [48] is used for the 
identification of jets that originate from b quarks (b tagging). The 
algorithm uses the tracks and secondary vertices associated with 
AK4 jets or AK8 subjets as inputs to a neural network to produce 
a discriminator with values between 0 and 1, with higher values 
indicating a higher b quark jet probability. The loose and the tight 
operating points are about 85 and 50% efficient, respectively, for b 
jets with pT of about 100 GeV, with a false-positive rate for light-
flavor jets of about 10 and 0.1%.



Download	English	Version:

https://daneshyari.com/en/article/5495235

Download	Persian	Version:

https://daneshyari.com/article/5495235

Daneshyari.com

https://daneshyari.com/en/article/5495235
https://daneshyari.com/article/5495235
https://daneshyari.com/

