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Black holes as solutions to gravity theories, are generically identified by a set of parameters. Some of 
these parameters are associated with black hole physical conserved charges, like ADM charges. There 
can also be some “redundant parameters.” We propose necessary conditions for a parameter to be 
physical. The conditions are essentially integrability and non-triviality of the charge variations arising 
from “parametric variations,” variation of the solution with respect to the chosen parameters. In addition, 
we prove that variation of the redundant parameters which do not meet our criteria do not appear in the 
first law of thermodynamics. As an interesting application, we show that dilaton moduli are redundant 
parameters for black hole solutions to Einstein–Maxwell–(Axion)–Dilaton theories, because variations in 
dilaton moduli would render entropy, mass, electric charges or angular momenta non-integrable. Our 
results are in contrast with modification of the first law due to scalar charges suggested in Gibbons–
Kallosh–Kol paper [1] and its follow-ups. We also briefly discuss implications of our results for the 
attractor behavior of extremal black holes.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Solutions to generic physical theories are specified by a set 
of parameters. These parameters are generically integrals of mo-
tion that are specified by initial and boundary conditions. Al-
though there could be cases where some of these parameters take 
discrete-values, here we will only focus on real-valued parameters 
which can be varied continuously and define the “solution space” 
as the space of solutions spanned by these parameters.

All physical observables associated with a solution are functions 
of these parameters. In particular, among the physical observables 
there are conserved charges. The celebrated Noether theorem [2], 
while relating the conserved charges to symmetries of the theory, 
provides the functional form of conserved charges on this solution 
space.

In diffeomorphism invariant gravity theories, where we do not 
necessarily have (globally defined) time-like Killing vectors, the 
notion of “conservation” should be handled with special care. In 
addition, application of usual Noether theorem may face various 
challenges (e.g. see [3] and references therein for a review). To 

* Corresponding author.
E-mail addresses: kamalhajian@ipm.ir (K. Hajian), jabbari@theory.ipm.ac.ir

(M.M. Sheikh-Jabbari).

tackle these issues various different proposals and formulations 
have been proposed. However, there are aspects of this problem 
which still remain as a matter of debate to date.

As it may generically happen, physical observables may only be 
functions of a subset of parameters spanning the solution space. Or 
in other words, a part of the solution parameters may not appear 
in any physical observable. This can, in particular, happen in the-
ories with local gauge symmetry (like diffeomorphisms in gravity) 
or in theories with field redefinition symmetry at the level of clas-
sical action. For example, some of the solution parameters could be 
gauge artifacts which may be removed in different coordinate sys-
tems or by a choice of gauge. It may also happen that the theory 
enjoys a field redefinition symmetry and some of the parameters 
may be related to a choice of dynamical fields to describe the sys-
tem. An important example, which we consider and analyze here, 
is the shift symmetry in systems with a dilaton field. One would 
hence face the question which of the solution parameters are re-
ally physical ones.

An answer to this question, which is implicitly used in the 
literature, can be the following: any parameter that can be re-
moved by a symmetry transformation (transformations which do 
not change the equations of motion and a given boundary condi-
tion) is redundant, while the parameters which appear explicitly in 
the conserved charges like mass, angular momentum etc. are phys-
ical. This inaccurate resolution has shortcomings in the following 
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two situations. Firstly, it is now an established fact that there are 
some diffeomorphisms or gauge transformations to which one can 
associate non-trivial conserved charges [4]. In such cases, we are 
dealing with family of diffeomorphic, but still distinct, geometries 
[5–9] (or in generic case, gauge equivalent, but still distinct solu-
tions, e.g. see [10]) which are specified by a number of arbitrary 
functions. These families of solutions may hence be labeled by in-
finite parameters which are e.g. related to the Fourier modes of 
these functions and there is a well-defined charge associated with 
each of these parameters. Secondly, there can be parameters re-
movable by the action of a symmetry, while they appear explicitly 
in the well-established conserved charges like mass etc. An impor-
tant example of such a parameter is the dilaton modulus in the 
dilaton shift symmetry.

While the method and algorithm we provide can be used in a 
wider context, here we would tackle the question described above 
for a specific class of solutions to gravity theories, the black holes. 
We mainly focus on the family of stationary black holes, those 
which have a time-like Killing vector outside their (event) hori-
zon. It is now established that black holes generically Hawking 
radiate, a black body radiation emitted from any thermal system 
at the Hawking temperature and there should be an entropy as-
sociated with them [11,12]. It is also established that black holes 
obey laws of thermodynamics [13,14]. Black hole thermodynam-
ical quantities, which are either the extensive conserved charges, 
or the intensive (chemical) potentials, are all functions over the 
black hole solution space. Our goal here is to provide unambiguous 
criteria and algorithm to distinguish the physical and redundant 
parameters of these solutions.

2. Physical vs. redundant solution parameters

Let us start by crystallizing the definition of solution parameters 
described in the introduction.

Definition 1. Given a Lagrangian density L and a solution to its 
e.o.m’s with a given boundary condition, in some specific gauge 
and coordinate system, “solution parameters” pi are constants in 
dynamical fields each of which can be varied while e.o.m’s are still 
satisfied.

This definition makes a clear distinction between solution param-
eters and conserved charges attributed to a solution; solution pa-
rameters and conserved charges are conceptually different entities, 
which may or may not be related. To keep the distinction in mind, 
we denote the set of parameters by pi , while the standard no-
tation mass M , angular momentum J , electric charge Q , entropy 
S etc. is used for the conserved charges. Notice that this defini-
tion covers parameters which may appear in a solution and cor-
respond to the “residual symmetries and charges” [7] discussed in 
the introduction. On the other hand, it excludes parameters of the 
theory, constants which appear explicitly in the Lagrangian, like 
the Newton constant G or the cosmological constant �. Moreover, 
the definition clarifies that these parameters cannot be constrained 
or related to each other through equations of motion (e.o.m) or 
boundary conditions.

2.1. Charges vs. charge variations and the integrability

Solution parameters can be related to the conserved charges of 
a solution through symmetries of the theory and/or solution. Con-
served charges may be calculated by different methods. One can 
recognize two classes of such methods: those which provide a pre-
scription to calculate the charges directly, and the methods which 
calculate charge variations first, and if integrable, then the finite 

charges. Noether charge [2,15], Komar charge [16], ADM method 
[17] and its later developments like Brown–York [18], and ADT 
methods [19], are examples in the first category (reviewed e.g. in 
[20]). In these methods, the conserved charges are read directly 
from the solution (or possibly its subtraction off a reference solu-
tion). As examples of methods in the second category, quasi-local 
method [21], covariant phase space formulation [3,14,22–28] and 
solution phase space method (SPSM) [29] can be mentioned.

The methods based on charge variations, especially in the con-
text of gravity, are more precise, applicable to a wider range of 
solutions and may be uniformly applied to solutions with various 
asymptotic behavior. In these methods integrability of charge vari-
ations may yield non-trivial constraints on physical observables. 
The main idea we propose in this paper is to use the integrability 
conditions to distinguish between physical and redundant solution 
parameters. We employ SPSM which we find the more rigorous 
method among those in the charge variation class. Here, we briefly 
highlight the main ingredients and features of this method. For 
more details, the reader can refer to [29] or [30,31].

2.2. Solution Phase Space Method, a quick review

SPSM elaborates on the connection between solution parame-
ters and conserved charges. To calculate a charge variation four 
inputs are needed: 1) A Lagrangian L on d dimensional spacetime 
with coordinates xμ; 2) A symmetry to which the charge variation 
is attributed; 3) A solution to the e.o.m of the theory specified with 
dynamical field configuration � (e.g. metric gμν , gauge field Aμ , 
scalar field φ, etc.); 4) A perturbation around the solution δ�(xμ)

satisfying linearized e.o.m.
Based on covariant phase space formulation [14,22,24,27,28], 

SPSM combines the four inputs in a simple relation, to introduce a 
charge variation δHε ,

δHε ≡
∫
�

ω(δ�, δε�;�) =
∮
∂�

kε(δ�;�) , (1)

where � is a (codimension one) Cauchy surface and ∂� is its 
(codimension two) boundary. δHε is conserved if it is indepen-
dent of the choice of �. The d − 1-form ω (called symplectic 
current) is on-shell closed (dω = 0 on-shell) and its form is de-
termined through the Lagrangian L, e.g. see [14,27,28]. To write 
the second equation we have used ω = dk on-shell and the Stokes’ 
theorem. Explicit form of k for generic Lagrangians may be found 
e.g. in [31].

Information of the symmetry is in ε , which is in general a com-
bination of a diffeomorphism generator vector field ξμ and a gauge 
transformation λ, denoted by ε = {ξμ, λ} [29,32]. They act on fields 
as δε� ≡Lξ� + δλ A where Lξ is Lie derivation and δλ Aμ = ∂μλ.

In SPSM, ε is taken to be some specific subset of general dif-
feomorphisms and gauge transformations, called symplectic symme-
tries, for which

ω(δ�, δε�,�) = 0 , (2)

over the specified set of solutions � and δ�. This nice feature 
makes the conservation to be guaranteed and renders the con-
served charge variations to be independent of the codimension-2 
integration surface ∂�. Therefore, the charges can be obtained 
from integrating kε over any smooth and closed codimension-2 
surface S inside the bulk which encompass any non-smoothness, 
singularity or closed-time-like-curves of the solution [29].

Among all solutions of the theory, SPSM focuses on those which 
may be denoted by �(xμ; pi) where pi are the parameters dis-
cussed in Definition 1. For the last but not least input, the standard 
condition which is imposed on δ� is that it satisfies linearized 
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