
Physics Letters B 763 (2016) 145–150

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Symmetry energy and neutron star properties in the saturated 

Nambu–Jona-Lasinio model

Si-Na Wei, Wei-Zhou Jiang ∗, Rong-Yao Yang, Dong-Rui Zhang

Department of Physics, Southeast University, Nanjing 211189, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 May 2016
Received in revised form 9 October 2016
Accepted 10 October 2016
Available online 17 October 2016
Editor: W. Haxton

Keywords:
Symmetry energy
Neutron stars
NJL model

In this work, we adopt the Nambu–Jona-Lasinio (NJL) model that ensures the nuclear matter saturation 
properties to study the density dependence of the symmetry energy. With the interactions constrained by 
the chiral symmetry, the symmetry energy shows novel characters different from those in conventional 
mean-field models. First, the negative symmetry energy at high densities that is absent in relativistic 
mean-field (RMF) models can be obtained in the RMF approximation by introducing a chiral isovector–
vector interaction, although it would be ruled out by the neutron star (NS) stability. Second, with the 
inclusion of the isovector–scalar interaction the symmetry energy exhibits a general softening at high 
densities even for the large slope parameter of the symmetry energy. The NS properties obtained in the 
present NJL model can be in accord with the observations. The NS maximum mass obtained with various 
isovector–scalar couplings and momentum cutoffs is well above the 2M�, and the NS radius obtained 
well meets the limits extracted from recent measurements. In particular, the significant reduction of the 
canonical NS radius occurs with the moderate decrease of the slope of the symmetry energy.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The nuclear symmetry energy is important for understanding 
the reaction dynamics of heavy-ion collisions, the structures of 
neutron- and proton-rich nuclei, and properties of neutron stars 
(NS) [1–3]. Though the symmetry energy, which is the energy dif-
ference per nucleon between pure neutron matter and symmetric 
matter, is well constrained at saturation density to date [4–8], 
the density dependence of the symmetry energy is still poorly 
known especially at supra-normal densities [2,9]. The symmetry 
energy predicted by different models is rather diverse at high den-
sities [10–17]. Unfortunately, the symmetry energy extracted from 
the data with various isospin diffusion models also suffers from 
the large uncertainty which diversifies in super-soft [18], soft [19], 
and stiff [20] forms at high densities. We note that new experi-
ments to probe the high-density symmetry energy are also on the 
way [21]. While different high-density behaviors of the symmetry 
energy are usually classified by the magnitude of the slope of the 
symmetry energy at saturation density, we may raise the question: 
Are there new high-density behaviors of the symmetry energy that 
can’t be simply elaborated by the slope parameter?
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On the other hand, the super-soft symmetry energy which 
reaches the maximum and then turns to negative values at high 
densities can be obtained from some non-relativistic models [12,
13], while it can not be produced in the relativistic mean field 
(RMF) models [14–17]. For instance, the nonlinear RMF mod-
els [15], the density-dependent RMF models [16,22], and the point 
coupling RMF models [23–25] predict similar tendencies of sym-
metry energy, and no super-soft symmetry energy arises in these 
models [17]. Since the success of RMF models in interpreting the 
pseudospin symmetry [26–28] and analyzing polarization observ-
ables in proton–nuclei reactions [29,30] indicates that the relativis-
tic dynamics that includes the large attractive scalar and repulsive 
vector [31–35] is of special importance, we may ask whether the 
super-soft symmetry energy is incompatible with the relativistic 
covariance, or it is hidden in some special interactions that are not 
included in usual RMF models.

To answer these questions, let’s first recall the prime impor-
tance of the chiral symmetry in the strong interaction. In fact, 
the chiral symmetry has served as a cornerstone to construct the 
effective QCD models of the strong interaction [36,37]. In the de-
velopment of RMF models, the chiral symmetry has also played 
an important role in guiding the nonlinear form of the meson 
self-interacting terms needed for the appropriate in-medium ef-
fects [38–42]. To explore the novel high-density behaviors of the 
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symmetry energy in the RMF approximation, it is appropriate to 
adopt chiral models and thus constrain the relevant interactions 
with the chiral symmetry. Among models respecting the chiral 
symmetry in bulk matter [38,41,43–45], the Nambu–Jona-Lasinio 
(NJL) model [43] and chiral-σ model [38,41] are two popular ones. 
The NJL model was originally proposed to realize the spontaneous 
symmetry breaking since the pion, as the Goldstone boson, can be 
derived dynamically. With the quark degrees of freedom, the NJL 
model is considered as an effective model for the QCD [46–48]. 
While it is not straightforward to construct the nucleons and de-
scribe nuclear matter due to the absence of the confinement in 
the NJL model [49], it is economic to realize in the NJL model the 
spontaneous breaking of the chiral symmetry with nucleonic de-
grees of freedom [50–53], like the chiral-σ model. In the hadron-
level NJL model, the character of chiral symmetry is also measured 
by the chiral condensate in the non-perturbative vacuum. In this 
work, we thus study in the hadron-level NJL model the density 
dependence of the symmetry energy with the various interactions 
respecting the chiral symmetry.

Recently, remarkable progresses in NS observations have been 
achieved. Accurate mass measurements determined two large-
mass NS’s: the radio pulsar J1614-2230 with mass of M = 1.97 ±
0.04M� [54] and the J0348+0432 with mass of M = 2.01 ±
0.04M� [55]. However, there is no consensus on the extracted NS 
radius [56] reported in the literature [57–63], due to the systematic 
uncertainties involved in the distance measurements and theoret-
ical analyses of the light spectrum [64–67]. In this work, we will 
then investigate whether the parametrizations of the present sat-
urated NJL model can satisfy the NS mass constraint and provide 
some useful comparisons with various NS radius constraints. In the 
following, we will in turn present the formalism, analyze the re-
sults, and give the summary.

2. Formalism

The original NJL model that only contains scalar, pseudoscalar, 
vector and axial vector interactions can not reproduce saturation 
properties of nuclear matter. In order to obtain the saturation 
property, the scalar–vector (SV) interaction, which also respects 
the chiral symmetry, was introduced [50,51]. This is similar to the 
chiral-σ model, where the saturation is fulfilled by introducing the 
scalar–vector coupling [41,68]. Similar efforts were also made to 
study the nuclear matter saturation and the phase diagram in the 
NJL model [52,53]. The Lagrangian of the saturated NJL model can 
then be written as [51]:

L0 = ψ̄(iγμ∂μ − m0)ψ + G S

2
[(ψ̄ψ)2 − (ψ̄γ5τψ)2]

− G V

2
[(ψ̄γμψ)2 + (ψ̄γμγ5ψ)2]

+ G S V

2
[(ψ̄ψ)2 − (ψ̄γ5τψ)2] · [(ψ̄γμψ)2

+ (ψ̄γμγ5ψ)2], (1)

where m0 is the bare nucleon mass. G S , G V and G S V are the scalar, 
vector and scalar–vector coupling constants, respectively. It is easy 
to see that the Lagrangian is chiral symmetric when m0 = 0. In or-
der to investigate the density dependence of the symmetry energy, 
we introduce the isovector, isovector–vector and isovector–scalar 
interactions in the Lagrangian which are written as:

LI V = Gρ

2
[(ψ̄γμτψ)2 + (ψ̄γμγ5τψ)2]

+ GρV

2
[(ψ̄γμτψ)2 + (ψ̄γμγ5τψ)2]

· [(ψ̄γμψ)2 + (ψ̄γμγ5ψ)2]
+ Gρ S

2
[(ψ̄γμτψ)2 + (ψ̄γμγ5τψ)2]

· [(ψ̄ψ)2 − (ψ̄γ5τψ)2], (2)

where Gρ , GρV and Gρ S are the isovector, isovector–vector and 
isovector–scalar coupling constants, respectively. LI V is also chi-
rally symmetric. Using the mean-field approximation,

(ψ̄ Aψ)(ψ̄ Bψ) = (ψ̄ Aψ) < ψ̄ Bψ > + < ψ̄ Aψ > (ψ̄ Bψ)

− < ψ̄ Aψ >< ψ̄ Bψ >, (3)

the Lagrangian can be simplified to be

L = L0 +LI V = ψ̄[iγμ∂μ − m(ρ,ρS) − γ 0�(ρ,ρS ,ρ3)]ψ
− U (ρ,ρS ,ρ3), (4)

where m, � and U are defined as

m(ρ,ρS) = m0 − (G S + G S V ρ2 + Gρ Sρ
2
3 )ρS , (5)

�(ρ,ρS ,ρ3) = G V ρ + Gρρ3τ3 − G S V ρ2
Sρ − GρV ρ2

3ρ

− GρV ρ3ρ
2τ3 − Gρ Sρ3ρ

2
Sτ3, (6)

U (ρ,ρS ,ρ3) = 1

2
(G Sρ

2
S − G V ρ2 − Gρρ2

3 + 3G S V ρ2
Sρ

2

+ 3GρV ρ2
3ρ2 + 3Gρ Sρ

2
3ρ2

S ). (7)

Eq. (5) is the gap equation for the nucleon effective mass in the 
NJL model. Here ρ =< ψ̄γ 0ψ >, ρ3 =< ψ̄γ 0τ3ψ > and ρS =
< ψ̄ψ > are vector, isovector and scalar densities, respectively. 
From the energy–momentum tensor, we may obtain the following 
energy density and pressure

ε = −
∑

i=p,n

νi

�∫
pFi

d3 p

(2π)3
(p2 + m2)1/2 + G V ρ2

2
+ Gρρ2

3

2
+ G Sρ

2
S

2

+ G S V ρ2ρ2
S

2
− GρV ρ3

2ρ2

2
+ Gρ Sρ3

2ρ2
S

2
+ ε0, (8)

P = −
∑

i=p,n

νi

3

�∫
pFi

d3k

(2π)3

k2

√
k2 + m2

+ G V ρ2

2
+ Gρρ2

3

2
− G Sρ

2
S

2

− 3G S V ρ2
Sρ

2

2
(9)

−3GρV ρ2
3ρ2

2
− 3Gρ Sρ3

2ρ2
S

2
− 2�3

√
�2 + m2

3π2
− ε0, (10)

where � is the momentum cutoff, and the ε0 is introduced to give 
the vanishing energy density of the vacuum state. From the energy 
density, we can derive the symmetry energy as

Esym(ρ) = 1

2

∂2(ε/ρ)

∂δ2

∣∣∣∣
δ=0

= p2
F

6E F
+ 1

2
Gρρ − 1

2
GρV ρ3 − 1

2
Gρ Sρ

2
Sρ, (11)

where δ = (ρn − ρp)/ρ is the isospin asymmetry parameter and 

E F =
√

p2
F + m2. The symmetry energy has a term linear in ρ3

due to the isovector–vector interaction. The slope of the symmetry 
energy at saturation density is defined as

L = 3ρ0
∂ Esym

∂ρ

∣∣∣∣
ρ0

. (12)
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