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This study considers the generalized uncertainty principle, which incorporates the central idea of large 
extra dimensions, to investigate the processes involved when massive spin-1 particles tunnel from 
Reissner–Nordstrom and Kerr black holes under the effects of quantum gravity. For the black hole, 
the quantum gravity correction decelerates the increase in temperature. Up to O( 1

M2
f
), the corrected 

temperatures are affected by the mass and angular momentum of the emitted vector bosons. In addition, 
the temperature of the Kerr black hole becomes uneven due to rotation. When the mass of the black 
hole approaches the order of the higher dimensional Planck mass M f , it stops radiating and yields a 
black hole remnant.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Hawking stated that black holes can release radiation thermo-
dynamically due to quantum vacuum fluctuation effects near the 
event horizon [1]. Subsequently, Hawking radiation has attracted 
much attention from theoretical physicists and various methods 
have been proposed for deriving Hawking radiation. In particular, 
a semiclassical derivation was developed that models Hawking ra-
diation as a tunneling process, which includes the null geodesic 
method and Hamilton–Jacobi method. The null geodesic method 
was first proposed by Kraus and Wilczek [2,3], and then devel-
oped further by Parikh and Wilczek [4–6]. The Hamilton–Jacobi 
method was proposed by Angheben et al. [7] as an extension of 
Padmanabhan’s methods [8,9]. Both approaches to tunneling rely 
on the fact that the tunneling probability for the classically for-
bidden trajectory from inside to outside the horizon is given by 
� = exp (−2ImI/h̄), where I is the classical action of the trajectory. 
These two methods differ in how the imaginary part of the clas-
sical action is calculated. Many useful results have been obtained 
using the null geodesic and Hamilton–Jacobi methods [10–30].

A common feature of various quantum gravity theories, such as 
string theory, loop quantum gravity, and noncommutative geome-
try, is the existence of a minimum measurable length [31–34]. The 
generalized uncertainty principle (GUP) is a simple way of realiz-
ing this minimal length [35–37]. An effective model of the GUP in 
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one-dimensional quantum mechanics, which incorporates the cen-
tral idea of large extra dimensions, was given by [38]

L f k(p) = tanh

(
p

M f

)
, (1)

L f ω(E) = tanh

(
E

M f

)
, (2)

where the generators of the translations in space and time are the 
wave vector k and the frequency ω, and L f and M f are the higher 
dimensional minimal length and Planck mass, respectively. L f and 
M f satisfy L f M f = h̄. The quantization in position representation 
x̂ = x leads to

k = −i∂x, ω = +i∂t . (3)

Therefore, the low energy limit p � M f including the order of 
(p/M f )

3 gives

p ≈ −ih̄∂x

(
1 − βh̄2∂2

x

)
, (4)

E ≈ ih̄∂t

(
1 − βh̄2∂2

t

)
, (5)

where β = 1/(3M2
f ). Then, the modified commutation relation is 

given by

[x, p] = ih̄
(

1 + βp2
)

, (6)

and the generalized uncertainty relation (GUR) is
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�x�p ≥ h̄

2

[
1 + β〈p2〉

]
. (7)

From Eqs. (6) and (7), it can be concluded that the departure of 
GUP from the Heisenberg uncertainty principle increases with the 
momentum of the particle. We note that Eqs. (4)–(7) only apply 
to particles in the low energy limit p � M f , which is the specific 
case considered in the present study. In the low energy regime, 
the parameter β should be constrained in experiments designed 
to test the uncertainty principle, such as those by [39,40]. Other 
generalized uncertainty relations can be found in previous studies. 
A widely discussed relation, �x�p ≥ h̄

2

[
1 + l2 �p2

h̄2

]
, was proposed 

based on some aspects of quantum gravity and string theory [35], 
where the cutoff l was selected as a string scale in the context 
of the perturbative string theory or Plank scale based on quantum 
gravity. Another interesting GUR was obtained by treating the mass 
source as a Gaussian wave function and the horizon as a hori-
zon wave function [41], i.e., �r � lp

mp
�p + γ lp

�p
mp

, where the first 
part represents the uncertainty of the radial size of the source and 
the second represents the horizon uncertainty, and γ is a param-
eter that represents the order of unity in the full quantum gravity 
regime, which becomes very small in the semiclassical regime.

Black holes are an important research area in the study of quan-
tum gravity effects and many studies of black hole physics have in-
corporated the GUP. The thermodynamics of black holes have been 
investigated in the framework of GUP [42–48]. By combining the 
GUP with the tunneling method, Nozari and Mehdipour studied 
the modified tunneling rate of a Schwarzschild black hole [49]. The 
GUP-deformed Hamilton–Jacobi equation for fermions in curved 
spacetime was introduced and the corrected Hawking tempera-
tures were derived for various types of spacetime in [50–58]. By 
studying the tunneling of fermions, it was found that the quantum 
gravity effects slowed down the increase in the Hawking tempera-
tures, where this property naturally leads to a residual mass during 
black hole evaporation.

In this study, we investigate massive spin-1 particles (W ± , Z 0) 
tunneling across the horizons of black holes using the Hamilton–
Jacobi method, which incorporates the minimal length effect via 
Eqs. (4) and (5). Our calculations show that the quantum grav-
ity correction is related to the black hole’s mass as well as to 
the mass and angular momentum of the emitted vector bosons. 
Furthermore, the quantum gravity correction explicitly retards the 
increase in temperature during the black hole evaporation process. 
As a result, the quantum correction will balance the traditional 
tendency for a temperature increase at some point during the 
evaporation, which leads to the existence of remnants.

The remainder of this paper is organized as follows. In Sec-
tion 2, based on the GUP-corrected Lagrangian of the massive vec-
tor field, we derive the equation of motion for the vector bosons 
in curved spacetime. In Section 3, by incorporating GUP, we in-
vestigate the tunneling of charged massive bosons in a Reissner–
Nordstrom black hole. The tunneling of massive bosons in a Kerr 
black hole is also studied and the remnants are derived in Sec-
tion 4. Section 5 provides some discussion and the conclusions 
of this study. We use the spacelike metric signature convention 
(−, +, +, +) in this study.

2. Generalized field equations for massive vector bosons

We start from the kinetic term of the uncharged vector boson 
field in flat spacetime within the framework of GUP, 1

2B̃μνB̃
μν , 

where the modified field strength tensor is given by

B̃μν =
(

1 − βh̄2∂2
μ

)
∂μBν −

(
1 − βh̄2∂2

ν

)
∂νBμ. (8)

It should be noted that additional derivative terms exist. Next, we 
generalize this to the case of a charged vector boson field (W ±) in 
charged black hole spacetime. Considering the gauge principle, the 
additional derivatives also act on the local unitary transformation 
operator U (x), so they must also be replaced by covariant deriva-
tives [59]:(

1 − βh̄2∂2
0

)
∂0 →

(
1 + βh̄2 g00 D±

0
2
)

D±
0 , (9)(

1 − βh̄2∂2
i

)
∂i →

(
1 − βh̄2 gii D±

i
2
)

D±
i , (10)

where D±
μ = ∇μ ± i

h̄ e Aμ with ∇μ is the geometrically covariant 
derivative, Aμ is the electromagnetic field of the black hole, and 
e denotes the charge of the W + boson. The difference in signs of 
the O(β) terms in Eqs. (9) and (10) is attributable to the fact that 
g00 always shares different signs with gii .

By defining

D±
0 =

(
1 + βh̄2 g00 D±

0
2
)

D±
0 and D±

i =
(

1 − βh̄2 gii D±
i

2
)

D±
i ,

the GUP-corrected Lagrangian of W -boson field is given by

LGU P = −1

2

(
D+

μ W +
ν −D+

ν W +
μ

)(
D−μW −ν −D−ν W −μ

)
− m2

W

h̄2
W +

μ W −μ − i

h̄
eF μν W +

μ W −
ν , (11)

where Fμν = ∇̂μ Aν − ∇̂ν Aμ , with ∇̂0 =
(

1 + βh̄2 g00∇0
2
)

∇0 and 

∇̂i =
(

1 − βh̄2 gii∇i
2
)

∇i . Accordingly, the corresponding general-

ized action should be

SGU P =
∫

dx4√−gLGU P
(

W ±
μ , ∂μW ±

ν , ∂μ∂ρ W ±
ν , ∂μ∂ρ∂λW ±

ν

)
.

(12)

This action is invariant under a local U (1) gauge transformation, 
which does not refer to spacetime transformation.

By varying the action (12) with respect to the fields W − and 
W + , it follows immediately that

∂S
∂W −

ν

− ∂μ
∂S

∂
(
∂μW −

ν

) + ∂μ∂ρ
∂S

∂
(
∂μ∂ρ W −

ν

)
− ∂μ∂ρ∂λ

∂S
∂

(
∂μ∂ρ∂λW −

ν

) = 0, (13)

∂S
∂W +

ν

− ∂μ
∂S

∂
(
∂μW +

ν

) + ∂μ∂ρ
∂S

∂
(
∂μ∂ρ W +

ν

)
− ∂μ∂ρ∂λ

∂S
∂

(
∂μ∂ρ∂λW +

ν

) = 0. (14)

Then, by substituting the GUP Lagrangian (11) in (13), we obtain

∂μ

(√−gW +μν
) − 3β∂0

[√−g g00
(

e2 A0
2 + ih̄e∇0 A0

)
W +0ν

]
+ 3β∂i

[√−g gii
(

e2 Ai
2 + ih̄e∇i Ai

)
W +iν

]
+ 3β∂0∂0

(√−g g00ih̄e A0W +0ν
)

− 3β∂i∂i

(√−g gii ih̄e Ai W
+iν

)
+ βh̄2∂0∂0∂0

(√−g g00W +0ν
)

− βh̄2∂i∂i∂i

(√−g gii W +iν
)

+ √−g
i

h̄
e AμW +μν

− √−g
m2

W

h̄2
W +ν − √−g

i

h̄
eF μν W +

μ
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