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The physical properties of bound-state charged massive scalar field configurations linearly coupled to 
a spherically symmetric charged reflecting shell are studied analytically. To that end, we solve the 
Klein–Gordon wave equation for a static scalar field of proper mass μ, charge coupling constant q, and 
spherical harmonic index l in the background of a charged shell of radius R and electric charge Q . It 
is proved that the dimensionless inequality μR <

√
(qQ )2 − (l + 1/2)2 provides an upper bound on the 

regime of existence of the composed charged-spherical-shell–charged-massive-scalar-field configurations. 
Interestingly, we explicitly show that the discrete spectrum of shell radii {Rn(μ, qQ , l)}n=∞

n=0 which can 
support the static bound-state charged massive scalar field configurations can be determined analytically. 
We confirm our analytical results by numerical computations.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The influential no-hair theorems [1] have revealed the interest-
ing fact that spherically symmetric asymptotically flat black holes 
cannot support static massive scalar field configurations in their 
exterior regions [2–4]. Motivated by this well known property of 
spherically symmetric static black holes, we have recently [5] ex-
tended this no-scalar-hair theorem to the regime of regular [6]
curved spacetimes. In particular, it was proved in [5] that spheri-
cally symmetric compact reflecting [7] stars cannot support regular 
self-gravitating neutral scalar field configurations in their exterior 
regions.

One naturally wonders whether this no-scalar-hair behavior [5]
is a generic feature of compact reflecting objects? In particular, we 
raise here the following physically intriguing question: Can regular 
static charged massive scalar field configurations be supported by a 
compact spherically symmetric charged reflecting object? In order 
to address this interesting question, in this paper we shall study, 
using analytical techniques, the Klein–Gordon wave equation for a 
static linearized scalar field of proper mass μ and charge coupling 
constant q in the background of a spherically symmetric charged 
reflecting shell of radius R and electric charge Q .
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Our results (to be proved below) reveal the fact that, for given 
parameters {μ, q, l} [8] of the charged massive scalar field, there 
exists a discrete set of shell radii {Rn(μ, qQ , l)}n=∞

n=0 which can sup-
port the static bound-state charged massive scalar field configura-
tions. In particular, as we shall explicitly show below, the regime 
of existence of these composed charged-spherical-shell–charged-
massive-scalar-field configurations is restricted by the character-
istic inequality (qQ )2 > (μR)2 + (l + 1/2)2 [9,10]. This relation 
implies, in particular, that spatially regular bound-state configu-
rations made of neutral scalar fields [5] cannot be supported by a 
spherically symmetric compact reflecting object.

2. Description of the system

We shall analyze the physical properties of a scalar field � of 
proper mass μ and charge coupling constant q which is linearly 
coupled to a spherically symmetric charged shell of radius R . The 
shell is assumed to have negligible self-gravity:

M, Q � R , (1)

where {M, Q } are the proper mass and electric charge of the shell, 
respectively.

Decomposing the static scalar field � in the form [11]

�(r, θ,φ) =
∑
lm

eimφ Slm(θ)Rlm(r) , (2)
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one finds that the spatial behavior of the radial scalar eigenfunc-
tions {Rlm(r)} in the spacetime region outside the charged spheri-
cal shell is governed by the ordinary differential equation [12–16]

d

dr

(
r2 dRlm

dr

)
+ U Rlm = 0 , (3)

where

U = (qQ )2 − (μr)2 − Kl . (4)

Here Kl = l(l + 1) is the characteristic eigenvalue of the angular 
scalar eigenfunctions {Slm(θ)} [17,18].

The bound-state (spatially localized) charged massive scalar 
field configurations that we shall analyze below are characterized 
by asymptotically decaying eigenfunctions

�(r → ∞) ∼ 1

r
e−μr (5)

at spatial infinity. In addition, the presence of the spherically sym-
metric charged reflecting shell at r = R dictates the boundary con-
dition

�(r = R) = 0 (6)

for the characteristic scalar eigenfunctions.
In the next section we shall explicitly show that the radial dif-

ferential equation (3), which determines the spatial behavior of the 
characteristic radial eigenfunctions {Rlm(r)} of the charged massive 
scalar fields in the background of the charged spherical shell, is 
amenable to an analytical treatment.

3. The resonance equation for the composed 
charged-spherical-shell–charged-massive-scalar-field 
configurations

As we shall now show, the characteristic radial equation (3) for 
the charged massive scalar eigenfunction Rlm(r) can be solved an-
alytically. Defining the new radial function

ψlm = r1/2 Rlm (7)

and using the dimensionless radial coordinate

z = μr , (8)

one obtains the differential equation [19]

z2 d2ψ

dz2
+ z

dψ

dz
− [

z2 + (l + 1

2
)2 − (qQ )2]ψ = 0 (9)

for the characteristic radial scalar eigenfunction ψ .
The general solution of the radial differential equation (9)

can be expressed in terms of the modified Bessel functions (see 
Eq. 9.6.1 of [17]) [20]:

ψ(z) = A · Kν(z) + B · Iν(z) , (10)

where

ν2 ≡ (l + 1

2
)2 − (qQ )2 (11)

and {A, B} are normalization constants. The asymptotic large-r 
(large-z) behavior of the radial solution (10) is given by (see 
Eqs. 9.7.1 and 9.7.2 of [17])

ψ(z → ∞) = A ·
√

π

2z
e−z + B · 1√

2π z
ez . (12)

Taking cognizance of the boundary condition (5), which character-
izes the asymptotic spatial behavior of the bound-state (spatially 

localized) scalar configurations, one deduces that the coefficient of 
the exploding exponent in (12) must vanish:

B = 0 . (13)

One therefore concludes that the bound-state configurations of the 
charged massive scalar fields in the background of the charged 
spherical shell are characterized by the radial eigenfunction

ψ(r) = A · Kν(μr) . (14)

Taking cognizance of Eq. (14) and the boundary condition (6)
which is dictated by the presence of the spherically symmetric re-
flecting shell, one finds the characteristic resonance equation

Kν(μR) = 0 (15)

for the composed static charged-spherical-shell–charged-massive-
scalar-field configurations. Interestingly, as we shall show be-
low, the resonance condition (15) determines the discrete set of 
shell radii {Rn(μ, qQ , l)}n=∞

n=0 which can support the bound-state 
charged massive scalar field configurations.

In the next section we shall prove that the resonance condition 
(15) can only be satisfied in the bounded regime

(qQ )2 > (μR)2 + (l + 1

2
)2 . (16)

The necessary inequality (16), to be proved below, implies in par-
ticular that spatially regular static bound-state configurations made 
of neutral scalar fields cannot be supported by a spherically sym-
metric compact reflecting object.

4. The domain of existence of the charged massive scalar hair

Using the boundary conditions (5) and (6), one concludes that 
the scalar eigenfunction ψ , which characterizes the radial behavior 
of the charged massive scalar fields, must have (at least) one ex-
tremum point, z = zpeak, outside the spherically symmetric charged 
reflecting shell. In particular, at this extremum point the radial 
scalar eigenfunction ψ is characterized by the relations

{dψ

dz
= 0 and ψ · d2ψ

dz2
< 0} for z = zpeak . (17)

Substituting (17) into (9), one finds the characteristic inequal-
ity

z2
peak + (l + 1

2
)2 − (qQ )2 < 0 . (18)

Taking cognizance of (8) and using the inequality rpeak > R , 
one finds from (18) that the composed charged-spherical-shell–
charged-massive-scalar-field configurations are characterized by 
the inequality (16). In particular, this inequality sets the upper 
bound

μR <

√
(qQ )2 − (l + 1

2
)2 (19)

on the radius of the central charged supporting shell.
For later purposes, it is important to point out that the inequal-

ity (19) [or equivalently, the inequality (16)] implies that the static 
charged massive scalar field configurations are characterized by the 
relation ν2 < 0 [see Eq. (11)], which implies

iν ∈R . (20)
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