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We consider a solution of the effective four-dimensional Einstein equations, obtained from the general 
relativistic Schwarzschild metric through the principle of Minimal Geometric Deformation (MGD). Since 
the brane tension can, in general, introduce new singularities on a relativistic Eötvös brane model 
in the MGD framework, we require the absence of observed singularities, in order to constrain the 
brane tension. We then study the corresponding Bose–Einstein condensate (BEC) gravitational system 
and determine the critical stability region of BEC MGD stellar configurations. Finally, the critical stellar 
densities are shown to be related with critical points of the information entropy.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Several aspects of black hole physics have been recently stud-
ied, by considering black holes as Bose–Einstein condensates (BEC) 
of a large number N of weakly interacting, long-wavelength, gravi-
tons close to a critical point [1–3]. This paradigm has the merit 
to directly interconnect black hole physics to the study of crit-
ical phenomena, where quantum effects are relevant at critical 
points, even for a macroscopic number N of particles [4]. Although 
black holes are non-perturbative gravitational objects, the effective 
quantum field theory of gravitons that describes them can still be 
weakly coupled, due to large collective effects [3,5,6]. Black hole 
features that cannot be recovered in a standard semiclassical ap-
proach of gravity may then be encoded by the quantum state of 
the critical BEC [7,8], with the semiclassical regime obtained as 
a particular limit for N → ∞. Moreover, describing black holes 
by a condensate of long-wavelength gravitons generates a self-
sustained system, whose size equals the standard Schwarzschild 
radius and the gravitons are maximally packed [1–3,7]. A quan-
tum field-theoretical analysis also clarified the relation between 
the emerging geometry of spacetime and the quantum theory [9].

Brane-world models are effective five-dimensional (5D) phe-
nomenological realisations of the Hořava–Witten domain wall so-
lutions [10], when moduli effects, engendered from the remain-
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ing extra dimensions, may be disregarded [11,12]. The brane self-
gravity is identified by the brane tension σ , and the effective 
four-dimensional (4D) geometry, due to a compact stellar dis-
tribution, can be achieved by a Minimal Geometric Deformation 
(MGD) of the standard Schwarzschild solution in General Relativity 
(GR) [13–17]. The MGD method ensures that this brane-world ef-
fective gravitational solution reduces to the standard Schwarzschild 
solution, in the limit of infinite brane tension σ−1 → 0. Therefore 
the MGD is a framework that provides corrections to GR, controlled 
by a parameter ζ , that is a function of the stellar distribution ef-
fective radius and the brane tension.

Finally, we recall that a harmonic black hole model was recently 
introduced [18], which can be viewed as an explicit realisation of 
a BEC of gravitons, with a regular interior. The energy density in 
this model is obtained from a three-dimensional harmonic poten-
tial, “cut” around the horizon size in order to accommodate for 
the continuum spectrum of scattering modes, and the Hawking 
radiation. Afterwards, this model was ameliorated by instead con-
sidering the Pöschl–Teller potential [19], which naturally contains 
a continuum spectrum above the bound states, contrary to the har-
monic oscillator.

We shall here employ this last model to study a MGD BEC 
black hole and analyse its critical stable density, from the point 
of view of the information entropy [20,21], and statistical mechan-
ics [22]. The information entropy has been applied to a variety of 
settings, and the stability of self-gravitating compact objects was 
already reported in Refs. [20,23]. In particular, Newtonian poly-
tropes, neutron stars, and boson stars were studied in Ref. [23]. 
The information entropy is well-known to measure the underlying 
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shape complexity of spatially localised configurations [20,21]. The 
less information involved in the modes that comprise a physical 
system, the smaller entropic information is required to represent 
the same physical system. The energy density is the main ingre-
dient to compute the information entropy. In this framework, the 
critical stable density of a BEC MGD black hole will be here stud-
ied, by relating the stellar distribution conditional entropy and its 
central critical density. In other words, the conditional entropy will 
be used to study the gravitational stability.

This work is organised as follows: we review the MGD proce-
dure in Section 2, and the BEC description of a MGD black hole is 
employed to establish a bound for the brane tension of a Eötvös 
brane-world model in Section 3; Section 4 is devoted to establish 
the interplay between the critical point in the stellar stability and 
the critical point of the conditional entropy in a BEC MGD self-
gravitating system scenario; finally, we comment on our findings 
in Section 5.

2. Minimal geometric deformation

The MGD approach is designed to produce brane-world correc-
tions to standard GR solutions, hence it is a suitable method to 
obtain inhomogeneous, spherically symmetric, stellar distributions 
that are physically admissible in the brane-world [17,24]. For ex-
ample, the bound σ � 5 × 106 MeV4 for the brane tension was 
obtained from the MGD in Ref. [30]. The MGD was originally ap-
plied in order to deform the standard Schwarzschild solution [13,
16,17] and describe the 4D geometry of a brane stellar distribution. 
Moreover, the MGD paved the way for interesting developments 
concerning 5D black string solutions of 5D Einstein equations [26]
in Eötvös variable brane tension models [27,28].

The method relies on the effective Einstein equations on the 
brane [29],

Rμν − 1

2
Rgμν + � gμν − T̃μν = 0 , (1)

where the effective energy–momentum tensor is given by

T̃μν = Tμν + Eμν + 1

σ
Sμν , (2)

which contains the usual stress tensor Tμν of brane matter 
(with four-velocity uμ), and the (non-local) Weyl and high en-
ergy Kaluza–Klein corrections Eμν and Sμν . The Weyl tensor can 
be further decomposed as

Eμν = 6

σ

[
U

(
1

3
hμν + uμ uν

)
+Pμν +Q(μ uν)

]
, (3)

where hμν = gμν − uμuν denotes the induced spatial metric, Pμν

is the anisotropic stress, U stands for the Weyl bulk scalar, and Qμ

denotes the energy flux field.
One then considers the general spherically symmetric metric,

ds2 = A(r)dt2 − dr2

B(r)
− r2 d�2 , (4)

in the effective equations (1). Any deformation of this static metric, 
with respect to a GR solution, must be caused by 5D bulk effects, 
in a brane-world scenario. Particularly, the radial component out-
side a compact stellar distribution, of average radius r = R , turns 
out to be given by [16,17]

B+(r) = 1 − 2 M

r
+ ζ e−I , (5)

where

I(r) =
r∫

R

(
A A′′

A′ 2
+ A′ 2

A2
− 1 + 2A′

r A
+ 1

r2

)(
2

r
+ A′

2A

)−1

dr̄ , (6)

where primes denote derivatives with respect to r. The parame-
ter ζ describes the deformation induced onto the vacuum by bulk 
effects, evaluated at the surface of the stellar distribution. There-
fore, ζ contains all relevant information of a Weyl fluid on the 
brane [30]. The matching conditions with the inner star metric 
then determine the outer metric for r > R [13,26]. In particular, 
if one considers the standard Schwarzschild metric, the deformed 
outer metric components read [16]

A+(r) = 1 − 2 M

r
, (7a)

B+(r) =
(

1 − 2 M

r

)[
1 + ζ

�

r

(
1 − 3 M

2 r

)−1
]

, (7b)

where � is a length given by1

� ≡ R

(
1 − 2M

R

)−1 (
1 − 3M

2R

)
. (8)

This metric has two event horizons where B+ = 0: one is the usual 
Schwarzschild horizon, rs = 2 M , and the second horizon is at r2 =
3M

2 − ζ �. The expression of ζ was previously derived [13,16],

ζ(σ , R) ≈ −0.275

R2 σ
, (9)

and the GR limit ζ ∼ σ−1 → 0 implies that r2 < rs . One can there-
fore conclude that the gravitational field around the compact star 
is weaker than in GR.

3. BEC and MGD: a brane tension bound

In order to study BEC black holes with the MGD methods, let 
us start from the Klein–Gordon equation for a scalar field � [19]{[

i h̄ ∂t − V (	x)]2 + h̄2 ∇2 − [
μ + S(	x)]2

}
�(t, 	x) = 0 , (10)

where μ denotes the rest mass and one included the time-
independent vector and scalar potentials V (	x) and S(	x). Writing 
�(t, 	x) = e−i 
 t/h̄ �(	x) and assuming S = V yield[
− h̄2

2 (
 + μ)
∇2 + V − 1

2
(
 − μ)

]
�(	x) = 0 , (11)

which is just a Schrödinger equation with m = 
 + μ, and E =
1
2 (
 − μ). It represents the relativistic dispersion relation 
 2 =
h̄2k2 +μ2, and we shall in particular consider the spherically sym-
metric Pöschl–Teller potential [19]

V = − 3μ

cosh(μ r/h̄)
, (12)

for which one can find explicit solutions for � = �(r) and com-
pute the corresponding energy density. In fact, this graviton BEC 
can be macroscopically modelled by an anisotropic fluid, with lo-
cal energy–momentum tensor of the form

T μν = (
p‖ − p⊥

)
vμvν + (ε + p⊥) uμuν + p⊥ gμν , (13)

where uμ uμ = −1 = −vμ vμ , and uμ vμ = 0, ε is the energy den-
sity, p⊥ and p‖ are the pressures perpendicular and parallel to the 

1 The deformation around the star surface is negative, in order to prevent a neg-
ative pressure for a solid crust [24].
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