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We present a self-consistent theory for odd nuclei with exact blocking and particle number and 
angular momentum projection. The demanding treatment of the pairing correlations in a variation-after-
projection approach as well as the explicit consideration of the triaxial deformation parameters in a 
projection after variation method, together with the use of the finite-range density-dependent Gogny 
force, provides an excellent tool for the description of odd–even and even–even nuclei. We apply the 
theory to the Magnesium isotopic chain and obtain an outstanding description of the ground-state 
properties, in particular binding energies, odd–even mass differences, mass radii and electromagnetic 
moments among others.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

In the last years there has been an important development in 
the description of even–even nuclei with effective interactions, in 
particular with the Skyrme, Gogny and relativistic [1–3] ones. The 
breakthrough has been possible by means of the beyond-mean-
field theories (BMFT), namely by the recovery of the symmetries 
broken in the mean-field approach (MFA) and by the explicit con-
sideration of large-amplitude fluctuations around the most prob-
able mean-field values. The shape parameters (β, γ ) [4–6] (and 
pairing gaps [7–9]) were used as coordinates in the framework of 
the generator-coordinate method (GCM) and the particle-number 
(PN) and angular-momentum (AM) symmetries were recovered by 
means of projectors. These developments are called symmetry-
conserving configuration mixing (SCCM) approaches and have been 
applied to even–even nuclei. Methods based on the Bohr collective 
Hamiltonian have also made large progress lately [10–12].

Odd nuclei, on the other hand, are far more complicated to 
deal with. Even at the mean-field level like in the Hartree–Fock–
Bogoliubov (HFB) or BCS theories, odd nuclei are numerically cum-
bersome and to calculate ground states one must try several spins, 
parity, etc. Furthermore, the blocked structure of the wave func-
tion entail the breaking of the time-reversal symmetry and triax-
ial calculations must be performed. The SCCM developments have 
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taken place for even–even nuclei and it seems natural to extend 
these approaches to odd–even and odd–odd nuclei. As a matter 
of fact angular-momentum projected calculations for odd-A nu-
clei started long ago, though they have been mostly performed on 
HF or HFB states in small valence spaces [13–17]. More recently 
a GCM mixing based on parity and AM-projected Slater determi-
nants in a model space of antisymmetrized Gaussian wave packets 
has been carried out in the frameworks of fermionic [18] and anti-
symmetrized [19,20] molecular dynamics. In the latter calculations, 
however, the pairing correlations are not treated properly. A first 
extension of BMFT from even to odd nuclei with the Skyrme force 
has been done recently in Ref. [21].

The purpose of this Letter is to report on the first systematic 
description of the odd and even nuclei of an isotopic chain in a 
symmetry-conserving approach with the Gogny force in a BMFT 
considering the (β, γ ) degrees of freedom explicitly and dealing 
optimally with the pairing correlations. Our approach considers 
exact triaxial self-consistent blocking and exact particle number 
and angular momentum conservation. As an illustration of our ap-
proach we have chosen the Magnesium isotopic chain for which 
there is abundant experimental data. Basic properties like odd–
even mass differences, magnetic and quadrupole moments as well 
as mass radii, among others, are investigated.

Our starting approach is the HFB theory [22]. As a mean-field 
approximation the HFB wave function |φ〉 is a product of quasi-
particles αρ defined by the general Bogoliubov transformation
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α
†
ρ =

∑
μ

Uμρc†
μ + Vμρcμ, (1)

where c†
μ, cμ are the particle-creation and -annihilation operators 

in the reference basis, in our case the Harmonic Oscillator one. 
U and V are the Bogoliubov matrices to be determined by the Ritz 
variational principle.

In our approach we have imposed three discrete self-consistent 
symmetries on our basis states {c†

μ, cμ}: spatial parity, P̂ , simplex, 
�1 = P̂ e−iπ J x and the �2T symmetry, with �2 = P̂ e−iπ J y and T
the time reversal operator. The first two symmetries provide good 
parity and simplex quantum numbers and the third allows to use 
only real quantities. The simplex symmetry furthermore allows to 
characterize the blocking structure of odd and even nuclei [23,24]. 
Our basis is symmetrized in such a way that

�1c†
k�

†
1 = +ic†

k, �1c†
k
�

†
1 = −ic†

k
, (2)

with k = 1, ..., M and 2M the dimension of the configuration space. 
We use Latin indices to distinguish the levels according to their 
simplex, {k, l, m} for simplex +i and {k, l, m} for simplex −i. The 
Greek indices μ,ρ , on the other hand, do not distinguish simplex 
and run therefore over the whole configuration space. If we fur-
ther assume that the intrinsic wave function is an eigenstate of 
the simplex operator, then, for a paired even–even nucleus half of 
the quasiparticle operators α†

μ , have simplex +i and the other half 
have simplex −i, i.e., Eq. (1) separates in two blocks:

α
†
m =

M∑
k=1

U+
kmc†

k + V +
kmc

k
,

α
†
m =

M∑
k=1

U−
kmc†

k
+ V −

kmck, (3)

with m = 1, ..., M in an obvious notation.
The wave function of the ground state of an even–even nucleus 

is given by1

|φ〉 =
2M∏
μ=1

αμ|−〉, (4)

with |−〉 the particle vacuum. The quasiparticle vacuum |φ〉 is ob-
viously defined by

αμ|φ〉 = 0, μ = 1, ...,2M. (5)

The ground state of an even–even nucleus has simplex +1. The 
quasiparticle excitations

|φ̃〉 = α
†
ρ1 |φ〉 (6)

correspond to odd–even nuclei. They can be written as vacuum to 
the quasiparticle operators α̃ρ ,

α̃ρ |φ̃〉 = 0, ρ = 1, ...,2M. (7)

The 2M operators {α̃†
ρ} are obtained from the set {α†

μ} by replac-

ing the creation operator α†
ρ1 by the annihilation operator αρ1

, the 
other 2M −1 operators remain unchanged. The simplex of the state 
|φ̃〉 is given by �1|φ̃〉 = in|φ̃〉, where we have introduced the block-
ing number n. It is n = 1 if α†

ρ1 has simplex +i and n = −1 if α†
ρ1

has simplex −i. The unblocked wave function |φ〉 is vacuum to M

1 The quasiparticle operators that annihilate trivially the particle vacuum are to 
be omitted from the product.

operators with simplex +i and to M with simplex −i. The blocked 
wave function |φ̃〉 is vacuum to M+ = M − n operators α̃†

m with 
simplex +i and to M− = M + n operators α̃†

m with simplex −i.

α̃
†
m =

M∑
k=1

Ũ+
kmc†

k + Ṽ +
kmc

k
, m = 1, ..., M+,

α̃
†
m =

M∑
k=1

Ũ−
kmc†

k
+ Ṽ −

kmck, m = 1, ..., M−. (8)

The matrices (Ũ+, Ṽ +, Ũ−, Ṽ −) are rectangular with M rows 
and M+ or M− columns and according to the transformation 
α

†
ρ1 → αρ1

, they are obtained, from the M × M squared matrices 
(U+, V +, U−, V −) from Eq. (3) by the corresponding columns ex-
change.

Though the state |φ̃〉 has the right blocking structure, since the 
Bogoliubov transformation mixes creator and annihilator operators 
and states with different angular momenta, |φ̃〉 is not an eigen-
state of the PN or the AM operators. As with even–even nuclei, 
to recover the particle-number symmetry one has to project to 
the right quantum numbers, see [22]. The easiest way would be to 
minimize the HFB energy, i.e., determine (Ũ , Ṽ ) and then perform 
the projections, i.e. the so-called projection-after-variation (PAV). 
The optimal way is to determine (Ũ , Ṽ ) directly from the mini-
mization of the projected energy, i.e., the variation-after-projection 
(VAP) method. From even–even nuclei one knows that PN-VAP 
is feasible while AM-VAP is very CPU-time consuming. The ap-
proach of solving the PN-VAP variational equation to find the self-
consistent minimum and afterwards to perform an AM-PAV is not 
very good because the AMP is not able to exploit any degree of 
freedom of the HFB transformation and self-consistency with re-
spect to the AMP is not guarantied. An intermediate way is to per-
form an approximate AM-VAP approach by solving the variational 
PN-VAP equation for a large set of relevant physical situations as to 
cover the sensitive degrees of freedom. Afterwards an AM-PAV to 
this set of wave functions will determine the absolute minimum 
among these states for different angular momenta. Usually it is 
believed that the strongest energy dependence of the nuclear inter-
action is related to the deformation parameters (β, γ ) and we will 
consider them as the additional degrees of freedom. Notice that 
this method guarantees, at least, AM-VAP self-consistency with re-
spect to these relevant quantities. Therefore, in order to obtain a 
grid of wave functions we solve the PN-VAP constrained equations

E ′[φ̃] = 〈φ̃ |Ĥ P̂ N |φ̃〉
〈φ̃ | P̂ N |φ̃〉 − 〈φ̃|λq0 Q̂ 20 + λq2 Q̂ 22|φ̃〉, (9)

with the Lagrange multiplier λq0 and λq2 being determined by the 
constraints

〈φ̃|Q̂ 20|φ̃〉 = q0, 〈φ̃|Q̂ 22|φ̃〉 = q2. (10)

The relation between (β, γ ) and (q0, q2) is given by β =√
20π(q2

0 + 2q2
2)/3r2

0 A5/3, γ = arctan(
√

2q2/q0) with r0 = 1.2 fm

and A the mass number.
In this work we are interested in the odd–even Magnesium iso-

topes. We therefore consider wave functions of the form

|φ̃π 〉 = α
†
ρ1

2M∏
μ=1

αμ|−〉. (11)

According to the isospin and parity we have four blocking chan-
nels: protons (neutrons) of positive or negative parity. Since Mag-
nesium isotopes have Z = 12, we restrict ourselves to the neutron 
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