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We study soliton and black hole solutions of Einstein charged scalar field theory in cavity. We examine 
the effect of introducing a scalar field mass on static, spherically symmetric solutions of the field 
equations. We focus particularly on the spaces of soliton and black hole solutions, as well as studying 
their stability under linear, spherically symmetric perturbations of the metric, electromagnetic field, and 
scalar field.
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1. Introduction

In the phenomenon of charge superradiance, a classical charged 
scalar field wave incident on a Reissner–Nordström black hole is 
scattered with a reflection coefficient of greater than unity if the 
frequency, ω, of the wave satisfies the inequality [1]

0 < ω < q�h, (1)

where q is the charge of the scalar field and �h is the electrostatic 
potential at the event horizon of the black hole. By this process, 
the charged scalar field wave extracts some of the electrostatic 
energy of the black hole. If a charged scalar field wave satisfy-
ing (1) is trapped near the event horizon by a reflecting mirror 
of radius rm , the wave can scatter repeatedly off the black hole, 
and is amplified each time it is reflected. This can lead to an in-
stability (the “charged black hole bomb”) where the amplitude of 
the wave grows exponentially with time [2–5], providing the scalar 
field charge q and mass μ satisfy the inequality [5]

q

μ
>

√√√√ rm
r− − 1
rm
r+ − 1

> 1, (2)
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where r+ and r− are, respectively, the radius of the event hori-
zon and inner horizon of the black hole. The inequality (2) ensures 
that the area of the event horizon increases as the scalar field 
evolves [2], and implies that for fixed q and μ, the mirror radius 
rm must be sufficiently large for an instability to occur. Physically, 
the scalar field wave must extract more charge than mass from the 
black hole, so that the black hole evolves away from extremality.

What is the ultimate fate of this charged black hole bomb in-
stability? To answer this question, it is necessary to go beyond 
the test-field limit and consider the back-reaction of the charged 
scalar field on the black hole geometry. Recently, we studied static, 
spherically symmetric, black hole [6] and soliton [7] solutions of 
Einstein charged scalar field theory in a cavity, in the case where 
the scalar field mass μ is set equal to zero. For both soliton and 
black hole solutions, the scalar field vanishes on the mirror. We 
examined the stability of these charged-scalar solitons and black 
holes by considering linear, spherically symmetric, perturbations of 
the metric, electromagnetic field, and massless charged scalar field. 
In the black hole case [6], we found that if the scalar field has no 
zeros between the event horizon and mirror, then the black holes 
appear to be stable. On the other hand, if the scalar field vanishes 
inside the mirror then the system is unstable. The situation for 
solitons is more complex [7]. Even if the scalar field has no zeros 
inside the mirror, there are some solitons which are unstable. The 
unstable solitons have small mirror radius and large values of the 
electrostatic potential at the origin.
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In [6] we conjectured that the stable black holes with charged 
scalar field hair could be possible end-points of the charged black 
hole bomb instability. This conjecture has been tested recently 
[8,9] by evolving the fully coupled, time-dependent, spherically 
symmetric, Einstein–Maxwell–Klein–Gordon equations in a cavity. 
Starting from a Reissner–Nordström black hole in a cavity with a 
small charged scalar field perturbation, the system evolved to a 
hairy black hole in which some of the charge of the original black 
hole was transferred to the scalar field.

For a massless charged scalar field, the work of [9] confirms 
our conjecture in [6] – the ultimate fate of the charged black hole 
bomb is an equilibrium black hole with scalar field hair. However, 
in [8,9] a massive charged scalar field is also considered. In this pa-
per we therefore study the effect of introducing a scalar field mass 
on the soliton and black hole solutions found in [6,7]. Our aim is to 
examine whether the end-points of the charged black hole bomb 
instability found in [8,9] correspond to stable equilibrium solutions 
of the Einstein–Maxwell–Klein–Gordon equations.

To this end, we begin in section 2 by introducing Einstein mas-
sive charged scalar field theory. We study numerical soliton and 
black hole solutions of the static, spherically symmetric field equa-
tions in section 3, paying particular attention to the effect of the 
scalar field mass on the phase space of solutions. The stability of 
the solutions is investigated in section 4, before our conclusions 
are presented in section 5.

2. Einstein massive charged scalar field theory

We consider a self-gravitating massive charged scalar field cou-
pled to gravity and an electromagnetic field, and described by the 
action

S = 1

2

∫ √−g d4x

[
R − 1

2
Fab F ab

− gab D∗
(a�

∗Db)� − μ2�∗�
]

(3)

where g is the metric determinant, R the Ricci scalar, Fab =
∇a Ab − ∇b Aa is the electromagnetic field (with electromagnetic 
potential Aa), � is the complex scalar field, �∗ its complex conju-
gate and Da = ∇a − iq Aa with ∇a the usual space-time covariant 
derivative. Round brackets in subscripts denote symmetrization of 
tensor indices. The scalar field charge is q and μ is the scalar field 
mass. We use units in which 8πG = 1 = c and metric signature 
(−, +, +, +).

Varying the action (3) gives the Einstein–Maxwell–Klein–
Gordon equations

Gab = T F
ab + T �

ab, ∇a F ab = J b, Da Da� − μ2� = 0, (4)

where the stress-energy tensor Tab = T F
ab + T �

ab is given by

T F
ab = Fac Fb

c − 1

4
gab Fcd F cd,

T �
ab = D∗

(a�
∗Db)� − 1

2
gab

[
gcd D∗

(c�
∗Dd)� + μ2�∗�

]
, (5)

and the current J a is

J a = iq

2

[
�∗Da� − �

(
Da�

)∗]
. (6)

We consider static, spherically symmetric, solitons and black 
holes with metric ansatz

ds2 = − f (r)h(r)dt2 + f −1(r)dr2 + r2
[
dθ2 + sin2 θ dϕ2

]
, (7)

where the metric functions f and h depend only on the radial 
coordinate r. It is useful to define an additional metric function 
m(r) by

f (r) = 1 − 2m(r)

r
. (8)

By a suitable choice of gauge (see [6,7] for details), we can take 
the scalar field � = φ(r) to be real and depend only on r. The 
electromagnetic gauge potential has a single non-zero component 
which depends only on r, namely Aμ = [A0(r),0,0,0]. Defining a 
new quantity E = A′

0, the static field equations (4) generalize those 
in [6,7] to include a nonzero scalar field mass and take the form

h′ = r
(

q A0φ f −1
)2 + rhφ′ 2, (9a)

E2 + μ2hφ2 = −2

r

[
f ′h + 1

2
f h′ + h

r
( f − 1)

]
, (9b)

0 = f A′′
0 +

(
2 f

r
− f h′

2h

)
A′

0 − q2φ2 A0, (9c)

0 = f φ′′ +
(

2 f

r
+ f ′ + f h′

2h

)
φ′ +

(
q2 A2

0

f h
− μ2

)
φ. (9d)

3. Soliton and black hole solutions

We now consider soliton and black hole solutions of the static 
field equations (9). In both cases we have a mirror at radius rm , 
on which the scalar field must vanish, so that φ(rm) = 0. As in [7], 
here we consider only solutions where the scalar field has its first 
zero on the mirror, since it is shown in [6] that black hole solutions 
for which the scalar field has its second zero on the mirror are 
linearly unstable.

3.1. Solitons

In order for all physical quantities to be regular at the origin, 
the field variables have the following expansions for small r:

m =
(

φ2
0

[
a2

0q2 + h0μ
2
]

12h0

)
r3 + O (r5),

h = h0 +
(

q2a2
0φ

2
0

2

)
r2 + O (r4),

A0 = a0 +
(

a0q2φ2
0

6

)
r2 + O (r4),

φ = φ0 −
(

φ0
[
a2

0q2 − h0μ
2
]

6h0

)
r2 + O (r4), (10)

where φ0, a0 and h0 are arbitrary constants. By rescaling the time 
coordinate (see [7] for details), we can set h0 = 1 without loss of 
generality. A length rescaling [7] can then be used to fix the scalar 
field charge q = 0.1. For each value of the scalar field mass μ, 
soliton solutions are then parameterized by the two quantities a0
and φ0.

Scalar field profiles for some typical soliton solutions are shown 
in Fig. 1. From the expansions (10), it can be seen that if the scalar 
field mass vanishes, μ = 0, and φ0 > 0 then close to the origin 
the scalar field is decreasing [7]. This is no longer necessarily the 
case when μ > 0. For φ0 > 0 and h0 = 1, if |a0| > μ/q then the 
scalar field is decreasing close to the origin, and, for the numerical 
solutions investigated, it monotonically decreases to zero on the 
mirror. If |a0| < μ/q then the scalar field is increasing close to the 
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