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We derive and study an approximate static vacuum solution generated by a point-like source in a higher 
derivative gravitational theory with a pair of complex conjugate ghosts. The gravitational theory is local 
and characterized by a high derivative operator compatible with Lee–Wick unitarity. In particular, the 
tree-level two-point function only shows a pair of complex conjugate poles besides the massless spin 
two graviton. We show that singularity-free black holes exist when the mass of the source M exceeds a 
critical value Mcrit. For M > Mcrit the spacetime structure is characterized by an outer event horizon and 
an inner Cauchy horizon, while for M = Mcrit we have an extremal black hole with vanishing Hawking 
temperature. The evaporation process leads to a remnant that approaches the zero-temperature extremal 
black hole state in an infinite amount of time.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The quantization problems of the Einstein–Hilbert action are 
well known. In the past 40 years, many authors have tried to quan-
tize gravity by introducing modifications to Einstein’s gravity. The 
first higher derivative theory of gravity dates back to quadratic 
gravity, which was proposed by Stelle in 1977 [1]. Stelle’s theory is 
renormalizable and asymptotically free, but it is not unitary, having 
a massive ghost state in the spectrum.

A class of self-consistent quantum theories is represented by 
weakly non-local modifications of Einstein’s gravity. These theories 
were first discussed by Krasnikov and Kuz’min [2,3], following pre-
vious work by Efimov [4]. A significant contribution to this line of 
research was later provided by Tomboulis, who proposed a whole 
class of weakly non-local super-renormalizable gauge and gravita-
tional theories [5–7]. Recently, there have been a renewed interest 
in this class of gravity theories, which have been extensively stud-
ied to better understand their quantum properties [8,9]. In partic-
ular, a simple extension of [10] turns out to be completely finite at 
quantum level. Preliminary studies of black holes and gravitational 
collapse in these theories are reported in [11–18].

The weakly nonlocal theories are a quasi-polynomial extension 
of the higher derivative theories introduced and studied by Asorey, 
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Lopez, Shapiro in [19]. Recently, Shapiro has pointed out that the 
quantum effective action of weakly nonlocal theories has likely an 
infinite number of complex conjugate poles [20]. Therefore, we de-
cided to come back to the local higher derivatives theories (beyond 
Stelle’s theory) with the special property of admitting the graviton 
field and only complex conjugate poles (no real poles) in the classi-
cal spectrum [20,21]. These theories are unitary in agreement with 
the Lee–Wick prescription [22–24].

In this paper, we focus on the minimal theory that fulfils the 
properties listed above. The action is [21,25–28]:

S = 2κ−2
∫

d4x
√|g|

[
R + α2

g Gμν�Rμν
]
, (1)

where κ2 = 16πGN, αg = 1/�2, and � is the UV scale of the the-
ory. � is not necessarily equal to the Planck mass, but it may be 
expected of the same order as the Planck mass.

Looking at the exact equations of motion (EOM), we can im-
mediately infer that all Ricci-flat spacetimes are exact solutions of 
the theory in vacuum [29]. However, when a point-like source is 
introduced on the right side of the EOM, the Schwarzschild, the 
Kerr, and other Ricci-flat spacetimes are no more exact solutions. 
Indeed, the Newtonian potential turns out to be regular and con-
stant near r = 0 in any general higher derivative theory [28,30,31]
(in nonlocal gravity we have a similar regular behaviour [32]). We 
thus expect a similar regular behaviour also for the exact black 
hole solutions, if any, when the EOM are solved in a non-empty 
spacetime. On the footprint of these results, in this paper we only 
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Fig. 1. Left panel: effective mass m(x) for M = 1. Right panel: F (x) for M = 1.5 (dotted line, no horizon), M = 2.165 (dashed line, one horizon), and M = 3 (solid line, two 
horizons). See the text for more details.

consider approximate EOM that we can somehow “solve exactly”, 
namely(

1 + �2

�4

)
Gμν + O (R2

μν) = 8πGN Tμν . (2)

2. Black hole solutions

Let us consider a static point-like source of mass M . The only 
non-vanishing component of its energy-momentum tensor is:

T 0
0 = −Mδ(�x) , (3)

where δ(�x) is the Dirac delta function and �x = (x, y, z) are the 
Cartesian coordinates of the 3-space. Eq. (2) can be interpreted as 
the standard Einstein equations with an effective matter source on 
the left hand side. The effective energy-momentum tensor is

T̃μν ≈
(

1 + �2

�4

)−1

Tμν . (4)

The approximate EOM we are going to solve (leaving aside opera-
tors O (R2)) read

Gμν = 8πGN T̃μν = 8πGN

(
1 + �2

�4

)−1

Tμν. (5)

We point out that this is a drastic approximation of the exact 
EOM coming from the theory (1), but the outcome will turn out 
to be consistent with the results obtained in the Newtonian ap-
proximation [28,30,31]. Moreover, as we have already pointed out, 
the Ricci-flat solutions are mathematically inconsistent in presence 
of a point-like source.

With the choice (3), the effective energy-momentum tensor can 
be written as

T̃ μ
ν = diag

(
−ρ̃, P̃r, P̃θ , P̃θ

)
, (6)

where ρ̃ is the effective energy density, P̃ r is the effective radial 
pressure, and P̃θ is the effective tangential pressure. The effective 
energy density is

ρ̃(r) =
(

1 + �2

�4

)−1

Mδ(�x) = M

∫
dk3

(2π)3

ei�k�x

1 + (k/�)4

= M�2

4πr
e
− r�√

2 sin
r�√

2
. (7)

Let us assume that the static and spherically symmetric solu-
tion of Eq. (2) has the usual Schwarzschild-like form

ds2 = −F (r)dt2 + dr2

F (r)
+ r2d
2 , (8)

where

F (r) = 1 − 2GNm(r)

r
. (9)

m(r) is some effective mass and is a function of the radial coordi-
nate r only because of the spherical symmetry.

With the energy-momentum tensor in Eq. (6) and the metric 
ansatz in (8), the Einstein equations (5) turn into

dm

dr
= 4πr2ρ̃ , (10)

1

F

dF

dr
=

2GN

(
m + 4πr3 P̃r

)
r (r − 2GNm)

, (11)

dP̃r

dr
= − 1

2F

dF

dr

(
ρ̃ + P̃r

)
+ 2

r

(
P̃θ − P̃r

)
. (12)

From Eq. (10), we find the function m

m(r) = 4π

r∫
0

dx x2ρ̃(x) . (13)

Eq. (11) is solved by P̃ r = −ρ̃ , while From Eq. (12) we derive P̃θ .
If we plug the effective energy density (7) into Eq. (13) and we 

integrate over the radial coordinate r, we find

m(x) = M f (x) , (14)

where x = �r/
√

2 is a dimensionless coordinate and f (x) is the 
dimensionless effective mass

f (x) = 1 − e−x [(1 + x) cos x + x sin x] . (15)

The left panel in Fig. 1 shows the profile of m(x) for M = 1. For 
x � 1, we recover the limit of general relativity with m = M and 
the metric reduces to the Schwarzschild solution. At small radii, 
there are deviations from the classical picture. The characteristic 
length scale is 1/�, which is the UV cut-off of the theory and is 
presumably extremely small, like the Planck length even if it is not 
necessarily the Planck length. m(x) has a bump at x ≈ 3 because 
the effective energy density is negative between x ≈ 3 and x ≈ 5. 
In other words, if we interpret this model as Einstein’s gravity 
coupled to an effective energy-momentum tensor rather than as 
a non-local modification of Einstein’s gravity, the effective energy-
momentum tensor violates some energy conditions.

If we expand the effective mass around the centre r = 0, we 
have

m = �3r3

3
√

2
M + ... . (16)

We thus find a de Sitter core
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