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We explore possibility to find out a new model of gravastars in the extended D-dimensional Einstein–
Maxwell space–time. The class of solutions as obtained by Mazur and Mottola of a neutral gravastar 
[1,2] have been observed as a competent alternative to D-dimensional versions of the Schwarzschild–
Tangherlini black hole. The outer region of the charged gravastar model therefore corresponds to a higher 
dimensional Reissner–Nordström black hole. In connection to this junction conditions, therefore we have 
formulated mass and the related Equation of State of the gravastar. It has been shown that the model 
satisfies all the requirements of the physical features. However, overall observational survey of the results 
also provide probable indication of non-applicability of higher dimensional approach for construction of 
a gravastar with or without charge from an ordinary 4-dimensional seed as far as physical ground is 
concerned.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

A decade or more ago Mazur and Mottola [1,2] have proposed 
a new solution for the endpoint of a gravitationally collapsing 
neutral system. By extending the concept of Bose–Einstein con-
densation to gravitational systems they constructed a cold compact 
object which consists of an (i) interior de Sitter condensate phase, 
and (ii) exterior Schwarzschild geometry. These are separated by 
a phase boundary with a small but finite thickness r2 − r1 = δ of 
the thin shell, where r1 and r2 represent the interior and exterior 
radii of the gravastar. Therefore, the equation of state (EOS) under 
consideration are as follows:

I. Interior: 0 ≤ r < r1, with EOS p = −ρ ,
II. Shell: r1 < r < r2, with EOS p = +ρ ,

III. Exterior: r2 < r, with EOS p = ρ = 0.

Here the presence of matter on the shell is required to achieve 
the stability of the systems under expansion by exerting an in-
ward force to balance the repulsion from within. These types of 
gravitationally vacuum stars were termed as gravastars. Thereafter 
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several scientists have been studied these models under different 
viewpoints and have opened up a new field of research as an al-
ternative to Black Holes [3–15].

Very recently, a charged (3 + 1)-dimensional gravastar admit-
ting conformal motion has proposed by some of our collabora-
tors [16] in the framework of Mazur and Mottola model [1,2]. In 
this work the authors provide an alternative to static black holes. 
However, energy density here is found to diverge in the interior 
region of the gravastar. This actually scales like an inverse second 
power of its radius and unfortunately makes the model singular at 
r = 0. However, interestingly in one of the solutions it is shown 
that the total gravitational mass vanishes for vanishing charge and 
turns the total gravitational mass into an electromagnetic mass 
under certain conditions. An extension on charged gravastar of Us-
mani et al. [16] can be found in the work of Bhar [17] admitting 
conformal motion with higher dimensional space–time.

In the present study we generalize the four-dimensional work 
on gravastar by Usmani et al. [16] to the higher dimensional 
space–time, however without admitting conformal motion. Our 
main motivation here is to construct gravastars in the Einstein–
Maxwell geometry and see the higher dimensional effects, if 
any. Therefore this investigation is also extension of the work of 
Bhar [17] without admitting conformal motion and that of Ra-
haman et al. [18] with charge where originally higher dimensional 
gravastar has been studied. A detailed discussion on higher dimen-
sion and its applications in various fields of astrophysics as well as 
cosmology has been provided in Ref. [18].
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The plan of the present investigation is as follows: In Sec. 2 the 
Einstein–Maxwell space–time geometry has been provided as the 
background of the study whereas in Sec. 3 we discuss the Interior 
space–time, Exterior space–time and Thin shell cases of the gravas-
tars with their respective solutions. The related junction conditions 
are provided in Sec. 4. We explore physical features of the models, 
viz. proper length, energy condition, entropy, mass and equation 
of state in Sec. 5. At the end in Sec. 6 we provide some critically 
discussed concluding remarks.

2. The Einstein–Maxwell space–time geometry

For higher dimensional gravastar, we assume a D-dimensional 
space–time with the typical mathematical structure R1 X S1 X Sd

(d = D − 2), where S1 is the range of the radial coordinate r and 
R1 is the time axis. Let us therefore consider a static spherically 
symmetric metric in D = d + 2 dimension as

ds2 = −eνdt2 + eλdr2 + r2d�2
d, (1)

where d�2
d is a linear element on a d-dimensional unit sphere, 

parametrized by the angles φ1, φ2, ..., φd , as follows: d�2
d = dφ2

d +
sin2 φd[dφ2

d−1 +sin2 φd−1{dφ2
d−2 + ... +sin2 φ3(dφ2

2 +sin2 φ2dφ2
1)...}].

Now, the Hilbert action coupled to matter and electromagnetic 
field can be provided as

I =
∫

dD x
√−g

[
R D

16πG D
+ (Lm + Fik F ik)

]
, (2)

where Lm is the matter part of the Lagrangian and Fij is the elec-
tromagnetic field tensor which is related to the electromagnetic 
potentials through the relation Fij = Ai, j − A j,i .

In the above Eq. (2) the term R D is the curvature scalar in 
D-dimensional space–time whereas G D is the D-dimensional New-
tonian constant and Lm is the Lagrangian for matter–energy distri-
bution.

The Einstein–Maxwell field equations now can be written as

G D
ij = −8πG D [T m

ij + T em
ij ], (3)

where G D
ij is the Einstein tensor in D-dimensional space–time, T m

ij
and T em

ij are the matter–energy and electromagnetic tensors re-
spectively.

We assume that the interior of the star is filled up with perfect 
fluid and therefore the matter–energy tensors can be considered in 
the following form

T m
ij = (ρ + p)uiu j + pgij, (4)

where ρ is the energy density, p is the isotropic pressure and ui

(with uiui = 1) is the D-velocity of the fluid under consideration.
On the other hand, the electromagnetic tensors can be provided 

as

T em
ij = − 1

4πG D

[
F jk F k

i − 1

4
gij Fkl F kl

]
. (5)

The corresponding Maxwell electromagnetic field equations are

[(−g)1/2 F ij], j = 4π J i(−g)1/2, (6)

F [i j,k] = 0, (7)

where J i is the current four-vector satisfying J i = σ ui , the param-
eter σ being the charge density.

Hence the Einstein–Maxwell field equation (3), for the metric 
(1) along with the energy–momentum tensors, Eqs. (4)–(7), can be 
provided in the following explicit forms

−e−λ

[
d(d − 1)

2r2
− dλ′

2r

]
+ d(d − 1)

2r2
= 8πG D ρ + E2, (8)

e−λ

[
d(d − 1)

2r2
+ dν ′

2r

]
− d(d − 1)

2r2
= 8πG D p − E2, (9)

e−λ

2

[
ν ′′ − λ′ν ′

2
+ ν ′2

2
− (d − 1)(λ′ − ν ′)

r

+ (d − 1)(d − 2)

r2

]
− (d − 1)(d − 2)

2r2
= 8πG D p + E2, (10)

where E is the electric field. Here the symbol ‘′’ denotes differ-
entiation with respect to the radial parameter r and c = 1 (in 
geometrical unit).

Therefore, the energy conservation equation in the D-
dimensions is given by

1

2
(ρ + p) ν ′ + p′ = 1

4πG Drd
(rd E2)′, (11)

with the electric field E as follows

(rd E)′ = 2π
d+1

2


(d+1
2 )

rdσ(r)eλ/2. (12)

In traditional sense, the term σ eλ/2 appearing in the right hand 
side of Eq. (12), is known as the volume charge density. The as-
sumption σ eλ/2 = σ0rm , can consistently be understood as the 
higher dimensional volume charge density being polynomial func-
tion of r where the constant σ0 is the central charge density.

Now from the above Eq. (12) by assuming σ eλ/2 = σ0rm , we 
obtain the explicit form of the electric field as given by

E = q

rd
= 2π

d+1
2 σ0


(d+1
2 )

rm+1

(d + m + 1)
= Arm+1, (13)

where A = 2π
d+1

2 σ0


( d+1
2 )(d+m+1)

.

3. The gravastar models

3.1. Interior space–time

Following [1] we assume that the EOS for the interior region 
has the form

p = −ρ. (14)

The above EOS is known in the literature as a ‘false vacuum’, 
‘degenerate vacuum’, or ‘ρ-vacuum’ [19–22] which represents a re-
pulsive pressure, an agent responsible for the accelerating phase of 
the Universe, and is termed as the �-dark energy [23–27]. It is ar-
gued by [16] that a charged gravastar seems to be connected to 
the dark star [28–30].

The above EOS along with Eq. (11) readily provides

p = −ρ = k1r2(m+1) + k2. (15)

where k1 = A2(2m+d+2)
4πG D (2m+2)

and k2 is an integration constant. How-
ever, if we put r = 0 in Eq. (15), then it easily assigns the value 
of the integration constant k2 = pc = −ρc . In general there is no 
sufficient argument to take pressure and density to be zero at the 
junction surface. Actually, in the thin shell limit the pressure and 
density are step functions at the junction surface [31]. However, 
for the sake of brevity and convenience, if one considers boundary 
condition on the spherical surface that at r = R the pressure and 
density in Eq. (15) vanish, then it yields k2 = −k1 R2(m+1) = −ρc , 
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