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There has been rapidly growing interest in the past decade in a new gauge boson which is considerably 
lighter than the standard model Z boson. A well-known example of this kind is the so-called dark photon, 
and it is actively searched for in various experiments nowadays. It would be puzzling to have a new gauge 
boson which is neither massless nor electroweak scale, but possesses a rather small yet nonzero mass. We 
present a mechanism that can provide a light gauge boson as a result of a mass matrix diagonalization.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It is amusing to observe that a square matrix of the equal size 
of entities

M =
(

1 1
1 1

)
(1)

results in the eigenvalues λ = 0 and 2. When the matrix is slightly 
tilted or misaligned from the original matrix, there will be a 
nonzero but tiny eigenvalue λ � 1. There are even more general 
cases than the one presented in Eq. (1). In this letter, we will use 
this mechanism to rationalize a very light gauge boson.

A light gauge boson, sometimes called dark gauge boson (typi-
cally, MeV–GeV scale, but it can be even lighter) has been a popu-
lar subject to study after it was shown it could potentially address 
many puzzling observations such as the positron excess, the small 
scale problems around the galaxy, and the muon g − 2 anomaly 
[1]. If its lifetime is sufficiently long, the dark gauge boson itself 
can be a dark matter candidate [2–4].

For such a light particle to survive all the experimental con-
straints, it should have a very small coupling. A popular model 
is called the dark photon, because it couples only to the electro-
magnetic current like the photon when it is substantially lighter 
than the Z boson of the standard model (SM) [5]. A dark U (1)

can mix with the hypercharge U (1)Y of the SM through a gauge 
kinetic mixing term ε

2 cos θW
Z ′
μν Bμν , and couples to the SM parti-

cles through this mixing, which can be suppressed by the loops of 
some heavy fermions that have charges under both the dark U (1)

and the U (1)Y [6].
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The smallness of the mass may be explained by taking the vac-
uum expectation value (vev) of a scalar, which is responsible for 
the dark U (1) symmetry breaking, is also of very small scale. Yet, 
it would be desirable to find a possible mechanism to obtain a very 
light gauge boson from the high scale (electroweak or UV scale) 
physics without introducing a new scale. Some models that can 
address this using the supersymmetry framework can be found in 
Refs. [7–9].

In this letter, we will employ two massive gauge bosons of the 
same heavy mass scale and their large mixing to realize a simi-
lar mass matrix texture as Eq. (1) or even a more general form. 
The mass matrix of this form can be realized with, for instance, 
Higgs mechanism or Stückelberg mechanism. We shall call our 
mechanism Gauge see-saw as they rely on the mass matrix diag-
onalization like the neutrino see-saw to obtain a small mass for 
one particle while its partner remains in the heavy scale, although 
the mass matrix texture is very different from the typical (type-I) 
neutrino see-saw [10,11].

There are some relations between the properties of the two 
gauge bosons in our mechanism, and a discovery of one particle 
can help in searching for the other particle. We will discuss some 
implications of the gauge see-saw later in this letter.

2. Gauge see-saw

For a 2 × 2 gauge boson mass-squared matrix

M =
(

a b
b d

)
, (2)

the eigenvalues (physical mass-squared values) are given by

λ = 1

2

(
tr[M] ±

√
tr[M]2 − 4 det[M]

)
(3)
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where

det[M] = ad − b2 , (4)

tr[M] = a + d . (5)

The diagonal mass-squared terms (a, d) are always positive-
definite. While the off-diagonal mixing term (b) can be negative, 
it appears only in squared (b2) in Eq. (4). Thus, det[M] always 
contains a destructive sum, possibly resulting in a significant sup-
pression from the original scales, while tr[M] always has a con-
structive sum. When all elements (a, b, d) are at the same scale, 
tr[M] should remain at the original scale, while the det[M] can be 
orders of magnitude smaller in principle.

We define a mass alignment parameter r as

r ≡ det[M]
tr[M]2

. (6)

The gauge see-saw can be achieved for r � 1, under which the 
physical masses of two gauge bosons (Z L , Z H ) can be well approx-
imated as

m2
ZL

� det[M]
tr[M] , m2

Z H
� tr[M] , (7)

and the mass alignment parameter itself clearly shows the dis-
parate mass scales as

r � m2
ZL

m2
Z H

� 1 . (8)

A GeV–TeV level mass hierarchy would require r ≈ 10−6. In the 
perfect mass alignment case (r = 0), Z L becomes massless.1

Since r parametrizes how much the gauge symmetry of Z L is 
spontaneously broken, quantum radiative corrections to m2

Z L
would 

vanish in the r → 0 limit to enhance the gauge symmetry. In this 
sense, a small m2

Z L
is technically natural [13]. While any spin ob-

jects (scalar, fermion, vector, etc.) with the same mass texture 
should give the same results,2 it is a superior part of the vector 
gauge boson case that its gauge symmetry will automatically pro-
tect the small mass from the loop corrections.

The gauge see-saw mechanism relies on the large mixing 
among the interaction eigenstates. In the perfect mass alignment 
case (with a zero eigenvalue), the mixing angle is given by

sin θ =
√

a

a + d
, cos θ =

√
d

a + d
. (9)

The texture in Eq. (1) would give the maximal mixing (θ = π/4) 
of this case.

3. Illustrations

The gauge see-saw can work for any model that gives the 
masses to two U (1)s simultaneously. It can be extended to a larger 
number of the U (1)s in a straightforward way. We illustrate the re-
alization of the gauge see-saw in the mass matrix using the Higgs 
mechanism and the Stückelberg mechanism.

We take two Abelian gauge groups: U (1)′ with a gauge boson 
Ẑ ′ and a gauge coupling constant g′ , and U (1)′′ with Ẑ ′′ and g′′ .

1 In this limit, there are similar aspects with Ref. [12], in which a certain kind of 
mass matrix was exploited to realize the massless gauge bosons.

2 See Ref. [14] for the natural inflation with multi-axion, where specific alignment 
of couplings of axions to non-Abelian instantons allows a flat direction, along which 
an effective axion decay constant can be enhanced.

(i) Using Higgs mechanism:
In this realization, we first assume the couplings of the Ẑ ′ , Ẑ ′′ to 
the SM fermions are vectorial. Otherwise, the SM Higgs contribu-
tion to the mass matrix should be considered, which is beyond the 
scope of our simple illustration.

We consider two SM singlet complex scalars to break the two 
gauge symmetries spontaneously: �1 with a U (1)′ charge q′

1, 
a U (1)′′ charge q′′

1, a vev v1, and �2 with q′
2, q′′

2, v2. The rele-
vant Lagrangian is given by

L ∼
∑

i=1,2

∣∣∣(∂μ + ig′q′
i Ẑ ′

μ + ig′′q′′
i Ẑ ′′

μ

)
�i

∣∣∣2
. (10)

The mass-squared matrix for the gauge bosons in the ( Ẑ ′, Ẑ ′′) basis 
is given by

M =
(

g′ 2(q′ 2
1 v2

1 + q′ 2
2 v2

2) g′g′′(q′
1q′′

1 v2
1 + q′

2q′′
2 v2

2)

g′g′′(q′
1q′′

1 v2
1 + q′

2q′′
2 v2

2) g′′ 2(q′′ 2
1 v2

1 + q′′ 2
2 v2

2)

)
.

(11)

Then det[M] = g′ 2 g′′ 2(q′
1q′′

2 − q′′
1q′

2)
2 v2

1 v2
2, which tells the perfect 

mass alignment case is achieved for q′
1q′′

2 − q′′
1q′

2 = 0.
For (q′

1q′′
2 − q′′

1q′
2)

2 � 1, the gauge see-saw mechanism works 
(r � 1), and the physical masses are approximated by

m2
ZL

≈ g′ 2 g′′ 2(q′
1q′′

2 − q′′
1q′

2)
2 v2

1 v2
2

(g′ 2 + g′′ 2(q′′ 2
2 /q′ 2

2 ))(q′ 2
1 v2

1 + q′ 2
2 v2

2)
, (12)

m2
Z H

≈ (g′ 2 + g′′ 2(q′′ 2
2 /q′ 2

2 ))(q′ 2
1 v2

1 + q′ 2
2 v2

2). (13)

In the case of g′ ∼ g′′ , v1 ∼ v2, q′
1 ∼ q′′

1 ∼ q′′
2 ∼ q′

2 ∼ O(1), we 
get

m2
ZL

∼ O(1) g′ 2 v2
1(q

′
1q′′

2 − q′′
1q′

2)
2, (14)

m2
Z H

∼ O(1) g′ 2 v2
1, (15)

which clearly shows that mZ H stays at the original scale while mZ L

is suppressed by the small mass differences (or charge differences) 
in Eq. (11), giving r ∼O(1) (q′

1q′′
2 − q′′

1q′
2)

2.
If the two U (1)s are re-defined to have only diagonal masses 

(m2
Z L

, m2
Z H

), then the two Higgs scalars become linear combina-
tions of each other with mixed U (1) charges and vevs. One can 
see the gauge see-saw mechanism works only when one of these 
combinations has small mixed U (1) charges and vevs.

(ii) Using Stückelberg mechanism:
In the Stückelberg mechanism [15–17], we do not need real 
scalars, but need at least two pseudoscalars (a1, a2) transforming 
non-linearly under the two U (1)s.

Under the U (1)′ , they transform as

a1 → a1 − c′
1λ

′(x), a2 → a2 − c′
2λ

′(x), (16)

while Ẑ ′
μ → Ẑ ′

μ + ∂μλ′(x), (17)

and similarly for the U (1)′′ .
With two gauge invariant combinations ∂μa1 +c′

1 Ẑ ′
μ+c′′

1 Ẑ ′′
μ and 

∂μa2 + c′
2 Ẑ ′

μ + c′′
2 Ẑ ′′

μ , the mass terms are given by

L ∼
∑

i=1,2

1

2
ρ2

i

(
∂μai + c′

i Ẑ ′
μ + c′′

i Ẑ ′′
μ

)2
, (18)

with some mass parameters ρ1 and ρ2, giving the mass-squared 
matrix

M =
(

c′ 2
1 ρ2

1 + c′ 2
2 ρ2

2 c′
1c′′

1ρ
2
1 + c′

2c′′
2ρ

2
2

c′
1c′′

1ρ
2
1 + c′

2c′′
2ρ

2
2 c′′ 2

1 ρ2
1 + c′′ 2

2 ρ2
2

)
. (19)
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