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Empirical moments of inertia, J1, J2, J3, of atomic nuclei with E(4+
1 )/E(2+

1 ) > 2.7 are extracted 
from experimental 2+

g,γ energies and electric quadrupole matrix elements, determined from multi-
step Coulomb excitation data, and the results are compared to expectations based on rigid and irro-
tational inertial flow. Only by having the signs of the E2 matrix elements, i.e., 〈2+

g ||M̂(E2)||2+
g 〉 and 

〈0+
g ||M̂(E2)||2+

g 〉〈2+
g ||M̂(E2)||2+

γ 〉〈2+
γ ||M̂(E2)||0+

g 〉, can a unique solution to all three components of the 
inertia tensor of an asymmetric top be obtained. While the absolute moments of inertia fall between 
the rigid and irrotational values as expected, the relative moments of inertia appear to be qualitatively 
consistent with the β2 sin2(γ ) dependence of the Bohr Hamiltonian which originates from a SO(5) in-
variance. A better understanding of inertial flow is central to improving collective models, particularly 
hydrodynamic-based collective models. The results suggest that a better description of collective dynam-
ics and inertial flow for atomic nuclei is needed. The inclusion of vorticity degrees of freedom may 
provide a path forward. This is the first report of empirical moments of inertia for all three axes and the 
results should challenge both collective and microscopic descriptions of inertial flow.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Atomic nuclei are finite many-body quantum systems composed 
of strongly interacting fermions that share remarkable similarities 
with other systems such as molecules, atomic clusters, and ultra-
cold atomic gases. In particular, some of these quantum systems 
exhibit quenching of the moments of inertia from their rigid-body 
values at very low temperatures. For over half a century, super-
fluidity has been studied in both fermionic, e.g., atomic nuclei [1], 
and bosonic, e.g., liquid 4He [2], systems. For fermionic systems, 
pairing is central to superfluidity. More recently, the nature of col-
lective excitations and superfluidity of strongly interacting Fermi 
gases has been of active interest [3–9]; nearly perfect irrotational 
flow with a quadratic dependence on the deformation has been 
observed by Clancy et al. [6]. With these recent advances, the mo-
ments of inertia of atomic nuclei warrant an updated investigation.

The standard approach to evaluating the empirical moments of 
inertia of atomic nuclei has been to assume an axially symmet-
ric rotor with rotational energies given by E(I) = AI(I + 1), where 
A = h̄2/(2J ) and J is the moment of inertia. For Iπ = 2+ , the 
energy reduces to E(2+) = 6A and J = 3h̄2/E(2+). A further as-
sumption is that the first Iπ = 2+ state is unmixed with other 
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states. This approach is sufficient to demonstrate that moments 
of inertia of atomic nuclei fall between the rigid-body and irro-
tational flow values, as shown by Bohr and Mottelson in 1955 [1]. 
However, this approach is limited in validating microscopic calcula-
tions of moments of inertia and in elucidating the existence of any 
underlying symmetries. A more thorough understanding of iner-
tial flow requires knowledge of all three components of the inertia 
tensor; this requires input beyond the energy of the first excited 
2+ state.

The description of low-lying excited states of deformed even–
even nuclei has been largely based on collective rotations and vi-
brations about the average β and γ quadrupole shape parameters 
(cf. Ref. [10] for a thorough overview). These nuclei possess rota-
tional bands built on the 0+ ground states and relatively low-lying 
excited 2+ states, which could be the result of triaxial rotations or 
γ vibrations; distinguishing the two is notoriously difficult but the 
latter interpretation has been traditionally adopted. Fortunately, 
the Kumar–Cline sum rules [11] provide an experimental means 
for determining the average quadrupole deformation values and 
variances. These sum rules have demonstrated that the average γ
deformations, < γ >, are non-zero; an axially symmetric nucleus 
would give zero. Unfortunately, the variances of the quadrupole 
deformations are not typically known; these are needed to differ-
entiate between rigid and soft deformation. The few cases where 
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the variances are known, e.g., the Os isotopes [12], lack precision 
but suggest that nuclei are neither rigid nor soft but somewhere 
in between.

We explore the implications of assuming β- and γ -rigid de-
formation (i.e., an axially asymmetric top) on the extracted mo-
ments of inertia. This is accomplished by using a recently formu-
lated version of the triaxial rotor model with independent electric 
quadrupole and inertia tensors [13]; this is the simplest possible 
non-trivial view that allows a unique analytical solution to the 
three moments of inertia within the spin-2 subspace. While there 
have been investigations into the moments of inertia of axially 
asymmetric nuclei before, e.g., Refs. [14–18], empirical values for 
all three axes, to our knowledge, have never been reported.

In this Letter, empirical moments of inertia, J1, J2, J3, of 12 
atomic nuclei with E(4+

1 )/E(2+
1 ) > 2.7 are extracted from exper-

imental 2+
g,γ energies and electric quadrupole matrix elements, 

and the results are compared to expectations based on rigid and 
irrotational inertial flow. The E2 matrix elements used in this 
study are from multiple-step Coulomb excitation data [12,19–26], 
most of which are from the past two decades. Only by having 
the signs of the E2 matrix elements, i.e., 〈2+

g ||M̂(E2)||2+
g 〉 and 

〈0+
g ||M̂(E2)||2+

g 〉〈2+
g ||M̂(E2)||2+

γ 〉〈2+
γ ||M̂(E2)||0+

g 〉, can a unique so-
lution to all three components of the inertia tensor be obtained.

The Hamiltonian for rotations about three axes (i.e., an asym-
metric top) is

H = A1 Î2
1 + A2 Î2

2 + A3 Î2
3, (1)

where the parameters A1, A2, A3 are related to the components 
of the inertia tensor by A1 = h̄2/(2J1), A2 = h̄2/(2J2), A3 =
h̄2/(2J3) and Î1, ̂I2, ̂I3 are the angular momentum operators in 
the body-fixed frame with a |I K 〉 basis. The Hamiltonian can be 
rewritten as

H = A Î2 + F Î2
3 + G( Î2+ + Î2−), (2)

where

A = 1

2
(A1 + A2), F = A3 − A, G = 1

4
(A1 − A2), (3)

and

Î± = Î1 ± i Î2. (4)

When applied to doubly-even nuclei, there is an Iπ = 0+ ground 
state with E(0+) = 0, no Iπ = 1+ state, and two mixed Iπ = 2+
states (K π = 0+, 2+) with energies given by

H(2+) =
(

6A 4
√

3G
4
√

3G 6A + 4F

)
, (5)

which yields

E(2+) = 6A + 2F ± 2
√

F 2 + 12G2. (6)

The mixing angle is related to G and F by

tan 2� = 2
√

3
G

F
(7)

(note, � < 0 because G < 0) and the resulting E2 matrix elements 
for the Iπ = 0+, 2+ subspace are

〈0+
g ||M̂(E2)||2+

g 〉 =
√

5

16π
Q 0 cos(γ + �), (8)

〈0+
g ||M̂(E2)||2+

γ 〉 =
√

5

16π
Q 0 sin(γ + �), (9)

〈2+
g ||M̂(E2)||2+

γ 〉 =
√

25

56π
Q 0 sin(γ − 2�), (10)

and

〈2+
g ||M̂(E2)||2+

g 〉 = −
√

25

56π
Q 0 cos(γ − 2�)

= −〈2+
γ ||M̂(E2)||2+

γ 〉. (11)

The E2 matrix elements are described by three parameters, Q ◦
(axial deformation), γ (axial asymmetry), and � (mixing angle). 
Further details can be found in Refs. [13,25,27–29]. While the 2+
mixing angle, �, can be inferred from the excitation energies of 
higher spins, such an approach is not particularly sensitive and, 
more importantly, it does not lead to a unique empirical value.

Once the Q ◦ , γ , and � deformation and mixing parameters are 
determined from the experimental E2 matrix elements, the A, F , 
and G parameters of the Hamiltonian can be extracted exactly us-
ing the experimental 2+ energies, viz.

F = E(2+
γ ) − E(2+

g )

4
√

1 + tan2(2�)
, (12)

A = E(2+
g ) + E(2+

γ ) − 4F

12
, (13)

G = F

2
√

3
tan 2�, (14)

where the empirical moments of inertia are

J1 = 1

2

h̄2

A + 2G
, (15)

J2 = 1

2

h̄2

A − 2G
, (16)

J3 = 1

2

h̄2

A + F
. (17)

It is important to stress that the signs of the E2 matrix ele-
ments are required to obtain a unique solution to all three com-
ponents of the inertia tensor. In particular, 〈2+

g ||M̂(E2)||2+
g 〉 de-

termines whether the electric quadrupole moment is prolate or 
oblate, and 〈0+

g ||M̂(E2)||2+
g 〉〈2+

g ||M̂(E2)||2+
γ 〉〈2+

γ ||M̂(E2)||0+
g 〉 de-

termines whether γ > |�| or γ < |�|.
The present results can be connected directly to results ob-

tained using rigid and irrotational flow moments of inertia by

Jrigid, k = Brigid

[
1 −

√
5

4π
β cos

(
γ − k

2π

3

)]
(18)

and

Jirrot., k = 4Birrot.β
2 sin2

(
γ − k

2π

3

)
, (19)

where k = 1, 2, 3, Brigid = 2
5 M R2 = 0.0138 × A5/3 (h̄2/MeV), 

Birrot. = 3
8π M R2 = 0.00412 × A5/3 (h̄2/MeV), β = Q ◦

√
5π/(3Z R2), 

and R = 1.2A1/3 (fm). It is important to highlight the fact that the 
irrotational-flow component of the moment of inertia in Eq. (19)

resides in the mass parameter, Birrot. . The β2 sin2
(
γ − k 2π

3

)
de-

pendence is not explicitly limited to irrotational flow but results 
from the SO(5) invariance of the Bohr Hamiltonian (which hap-
pens to be fulfilled by irrotational flow), cf. page 121 of Ref. [10].

The mixing strength can be determined from the moments of 
inertia by

� = 1

2
tan−1

(√
3

J2 −J1
2J1J2
J3

−J2 −J1

)
, (20)



Download	English	Version:

https://daneshyari.com/en/article/5495443

Download	Persian	Version:

https://daneshyari.com/article/5495443

Daneshyari.com

https://daneshyari.com/en/article/5495443
https://daneshyari.com/article/5495443
https://daneshyari.com/

