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The SU(3) flavour symmetry breaking expansion in up, down and strange quark masses is extended from 
hadron masses to meson decay constants. This allows a determination of the ratio of kaon to pion 
decay constants in QCD. Furthermore when using partially quenched valence quarks the expansion is 
such that SU(2) isospin breaking effects can also be determined. It is found that the lowest order SU(3) 
flavour symmetry breaking expansion (or Gell-Mann–Okubo expansion) works very well. Simulations are 
performed for 2 + 1 flavours of clover fermions at four lattice spacings.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

One approach to determine the ratio |V us/V ud| of Cabibbo–
Kobayashi–Maskawa (CKM) matrix elements, as suggested in [1], 
is by using the ratio of the experimentally determined pion and 
kaon leptonic decay rates
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(where MK + , Mπ+ and mμ are the particle masses, and δem is an 
electromagnetic correction factor). This in turn requires the deter-
mination of the ratio of kaon to pion decays constants, f K +/ fπ+ , 
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a non-perturbative task, where the lattice approach to QCD may 
be of help. For some recent work see, for example, [2–10].

The QCD interaction is flavour-blind and so when neglecting 
electromagnetic and weak interactions, the only difference be-
tween the quark flavours comes from the mass matrix. In this 
article we want to examine how this constrains meson decay ma-
trix elements once full SU (3) flavour symmetry is broken, using 
the same methods as we used in [11,12] for hadron masses. In 
particular we shall consider pseudoscalar decay matrix elements 
and give an estimation for f K / fπ and f K +/ fπ+ (ignoring electro-
magnetic contributions).

2. Approach

In lattice simulations with three dynamical quarks there are 
many paths to approach the physical point where the quark 
masses take their physical values. The choice adopted here is to ex-
trapolate from a point on the SU (3) flavour symmetry line keeping 
the singlet quark mass m constant, as illustrated in the left panel of 
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Fig. 1. LH panel: Sketch of the path for the case of two mass degenerate quarks, mu = md ≡ ml , from a point on the SU (3) flavour symmetric line (m0, m0) to the physical 
point denoted with a ∗: (m∗

l , m∗
s ). RH panel: The pseudoscalar octet meson.

Fig. 1, for the case of two mass degenerate quarks mu = md ≡ ml . 
This allows the development of an SU (3) flavour symmetry break-
ing expansion for hadron masses and matrix elements, i.e. an ex-
pansion in

δmq = mq − m , with m = 1
3 (mu + md + ms) (2)

(where numerically m = m0). From this definition we have the triv-
ial constraint

δmu + δmd + δms = 0 . (3)

The path to the physical quark masses is called the ‘unitary line’ 
as we expand in the same masses for the sea and valence quarks. 
Note also that the expansion coefficients are functions of m only, 
which provided we keep m = const. reduces the number of al-
lowed expansion coefficients considerably.

As an example of an SU (3) flavour symmetry breaking ex-
pansion, [12], we consider the pseudoscalar masses, and find to 
next-to-leading-order, NLO, (i.e. O ((δmq)

2))

M2(ab) = M2
0 + α(δma + δmb)

+ β0
1
6 (δm2
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d + δm2

s )

+ β1(δm2
a + δm2

b) + β2(δma − δmb)
2

+ . . . , (4)

where ma , mb are quark masses with a, b = u, d, s. This describes 
the physical outer ring of the pseudoscalar meson octet (the right 
panel of Fig. 1). Numerically we can also in addition consider a fic-
titious particle, where a = b = s, which we call ηs . We have further 
extended the expansion to the next-to-next-to-leading or NNLO 
case, [13]. As the expressions start to become unwieldy, they have 
been relegated to Appendix A. (Octet baryons also have equivalent 
expansions, [13].)

The vacuum is a flavour singlet, so meson to vacuum matrix el-
ements 〈0|Ô|M〉 are proportional to 1 ⊗ 8 ⊗ 8 tensors, i.e. 8 ⊗ 8
matrices, where Ô is an octet operator. So the allowed mass de-
pendence of the outer ring octet decay constants is similar to the 
allowed dependence of the octet masses. Thus we have

f (ab) = F0 + G(δma + δmb)

+ H0
1
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d + δm2

s ) + H1(δm2
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b)

+ H2(δma − δmb)
2 + . . . . (5)

The SU (3) flavour symmetric breaking expansion has the simple 
property that for any flavour singlet quantity, which we generically 
denote by X S ≡ X S(mu, md, ms) then

XS(m + δmu,m + δmd,m + δms) = XS(m,m,m) + O ((δmq)
2) .

(6)

This is already encoded in the above pseudoscalar SU (3) flavour 
symmetric breaking expansions, or more generally it can be shown, 
[11,12], that X S has a stationary point about the SU (3) flavour 
symmetric line.

Here we shall consider

X2
π = 1

6 (M2
K + + M2

K 0 + M2
π+ + M2

π− + M2
K 0 + M2

K −) ,

X fπ = 1
6 ( f K + + f K 0 + fπ+ + fπ− + f K 0 + f K −) . (7)

(The experimental value of Xπ is ∼ 410 MeV, which sets the uni-
tary range.) There are, of course, many other possibilities such as 
S = N , 	, 
∗ , �, ρ , r0, t0, w0, [11,12,14].

As a further check, it can be shown that this property also holds 
using chiral perturbation theory. For example for mass degenerate 
u and d quark masses and assuming χPT is valid in the region of 
the SU (3) flavour symmetric quark mass we find

X fπ = f0

[
1 + 8

f 2
0

(3L4 + L5)χ − 3L(χ)

]
+ O ((δχl)

2) , (8)

where the expansion parameter is given by δχl = χ −χl with χ =
1
3 (2χl + χs), χl = B0ml , χs = B0ms , f0 is the pion decay constant 
in the chiral limit, Li are chiral constants and L(χ) = χ/(4π f0)

2 ×
ln(χ/	2

χ ) is the chiral logarithm. In eq. (8), as expected, there is 
an absence of a linear term ∝ δχl .

The unitary range is rather small so we introduce PQ or par-
tially quenching (i.e. the valence quark masses can be different to 
the sea quark masses). This does not increase the number of ex-
pansion coefficients. Let us denote the valence quark masses by μq

and the expansion parameter as δμq = μq − m. Then we have
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− ( 2
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and
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