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We propose a universal formula of dc electrical conductivity in rotational- and translational-symmetries 
breaking systems via the holographic duality. This formula states that the ratio of the determinant of the 
dc electrical conductivities along any spatial directions to the black hole area density in zero-charge limit 
has a universal value. As explicit illustrations, we give several examples elucidating the validation of this 
formula: We construct an anisotropic black brane solution, which yields linear in temperature for the 
in-plane resistivity and insulating behavior for the out-of-plane resistivity; We also construct a spatially 
isotropic black brane solution that both the linear-T and quadratic-T contributions to the resistivity can 
be realized.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The AdS/CFT correspondence provides a powerful tool to ana-
lyze strongly coupled systems, particularly for studying the trans-
port properties of strongly coupled systems. One of the most fa-
mous results of the AdS/CFT applications, is the so-called Kovtun–
Son–Starinets (KSS) bound η/s ≥ h̄/(4πkB), which states that for 
strongly coupled systems with a classical Einstein gravity dual de-
scription, the ratio of the shear viscosity η, to the entropy den-
sity s, obeys such a bound [1]. In most higher derivative gravity 
models, the bound is violated and there may still exist a lower 
bound [2,4,3,6,5,7], but even this is not clear [8].

Recently, the KSS conjecture was severely challenged by the 
anisotropic black brane systems, where the shear viscosity is a ten-
sor and some components of the tensor can become considerably 
smaller, which parametrically violates the bound [9,10]. Consid-
ered a d + 1-dimensional geometry with coordinates (t, xi, z), and 
anisotropy only along the z-direction, the shear viscosity to en-
tropy density ratio is related to the anisotropy as follows

ηxi z,xi z

s
= h̄

4πkB

gxi xi

gzz

∣∣∣∣
r=rH

, (1)

where gxi xi and gzz are the line elements of the metric and rH
is the event horizon radius, respectively. For translational sym-
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metry unbroken system, there is a universal relation between the 
graviton absorption cross-section and the black-brane horizon area 
in the large-incident-wavelength limit [11]: A = �(ω = 0). The 
rise of the event horizon area-graviton cross-section equivalence 
is simply because the metric perturbation component hx j

xi
satisfies 

the equation of motion of the minimally coupled massless scalar 
�hx j

xi
= 0. The spin-2 shear viscosity component is proportional to 

the graviton absorption cross-section via ηxi x j ,xi x j = �(ω = 0)/2κ2. 
Therefore, the spin-2 shear viscosity component is linearly depen-
dent on the event horizon area (i.e. the entropy density). However, 
for the spin-1 component hxi

z , the equation of motion is not iden-
tical to minimally coupled massless Klein-Gordon equation and 
thus the absorption cross-section of spin-1 vector field hxi z in 
an anisotropic black-brane background is not equal to the black-
brane horizon area. An arbitrary violation of the KSS bound would 
occur if gxi xi /gzz → 0. In this anisotropic background, the rota-
tional symmetry of the dual field theory is broken from S O (d − 1)

to S O (d − 2). We thus have shear viscosities ηxi z,xi z , which are 
defined by the metric fluctuations hxi z . Such metric components 
carry spin 1 with respect to the S O (d − 2) symmetries [12]. Al-
though the spin-2 components of the shear viscosity tensor in the 
xi − x j plane satisfy the KSS bound, the shear force in the xi − z
plane, which is related to the spin-1 metric components, can vi-
olates it. Furthermore, the diffusion bound D � Ch̄v2

F /kB T (C is a 
constant) will also break down [13–16]. The diffusivity bound was 
proposed to replace the Mott–Ioffe–Regel (MIR) bound in bad met-
als, and it is based on the KSS bound η/s ≥ Ch̄/kB and the relation 
η/s = DT /c2 for a vanishing chemical potential [14].
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We also notice that even in isotropic systems, the KSS conjec-
ture can be violated due to momentum dissipation [17–21]. In 
translation invariance broken but isotropic systems, fluctuations 
of the metric components becomes massive and the correspond-
ing shear viscosity does not yield a hydrodynamic description. In 
this case, the shear viscosity to entropy density ratio behaving as 
η/s ∼ T ν with ν a positive parameter, violating the KSS conjecture 
even in Einstein gravity. The shear viscosity now quantifies the rate 
of entropy production due to a strain.

One natural question is whether there is an alternative bound 
to be obeyed by the transport coefficients in such anisotropic sys-
tems. It is well-known that in condensed matter physics, it is 
notably universal that the materials are anisotropic with differ-
ent properties in different directions. Remarkably, the transport 
in high-Tc cuprates is strongly two-dimensional in character and 
there is substantial anisotropy between the in- and out-of-plane 
(i.e. CuO2 plane) resistivities. In contrast to the resistivity ρab in 
the CuO2 planes, where a generic behavior is observed to de-
pend on the metallic temperature, the c-axis transport in high-
temperature cuprates is very highly material-specific. Intriguingly, 
in most underdoped cuprates, ρc(T ) shows insulating behavior at 
all temperatures [22].

Therefore, the universal transporting properties of anisotropic 
systems deserve further studies. In this study, we will show that 
the ratio of the determinant of the electrical DC conductivities to 
the graviton absorption cross-section in anisotropic systems from 
holography in the zero-charges limit has a universal value

∏
i σii

Ad−3

∣∣∣∣∣qi=0 =
∏

i

Zd−1
i

∣∣∣∣∣
r=rH

, (2)

where A and Zi are area density per unit volume of the black 
hole event horizon and gauge field couplings, respectively. In the 
minimal coupling case, Zi = 1. Isotropic systems can be considered 
as special case of anisotropic systems.

The universal relation (2) is able to provide us some insights 
into the holographic realizations of the linear temperature resistiv-
ity:

1). For Z(φ) = 1 and d ≥ 3, isotropic black branes in the AdS space 
cannot be utilized to realize linear temperature resistivity in the 
zero-charges limit. Nevertheless, anisotropic black branes are good 
candidates in model-building of holographic strange metals.
2). For d + 1-dimensional spatially isotropic Lifshitz black holes 
with Z(φ) = 1 in the absence of hyperscaling violation, this re-
lation indicates that σii |qi=0 = [4π/(d + z − 1)]d−3T (d−3)/z , which 
is consistent with what obtained in Refs. [23,24] based on a uni-
versal scaling relation hypothesis: σ(ω = 0) = T (d−3)/z�(0), where 
z is a dynamical critical exponent and �(ω) is a frequency depen-
dent function.
3). This relation applies to shear viscosity-bound and electrical 
conductivity-bound violated systems, for example, systems consid-
ered in [20,25,26]. In [27], the authors conjectured that for the 
case d = 3, there exists a lower bound of dc electrical conductivity ∏

i σii > 1. But it was soon found that this bound can be violated 
by a special coupling between the linear axion fields and the U (1)

gauge field [25,26].

The structure of this paper is organized as follows. In section 2, we 
present our main results by writing down the conductivity tensor 
in terms of horizon data for anisotropic systems. We then present 
three examples that reproduce particular features of strange metals 
in section 3. Discussions and conclusions are presented in section 4

2. Main results

Without loss of generality, we consider the Einstein–Maxwell-
dilaton action with linear scalar fields

S =
∫

dd+1x
√−g

[
1

16πG

(
R − 1

2
∂φ2 + V (φ)

− 1

2

p−1∑
i=1

Yi(φ)∂ψ2
i

)
− 1

4g2
d+1

Z(φ)F 2

]
. (3)

Hereafter, we select 16πG = g2
d+1 = L = 1, where L is the AdS ra-

dius, g2
d+1 is the d +1-dimensional gauge coupling constant, and G

is Newton’s constant. Recently, this model has been widely stud-
ied in Refs. [28–35]. The solution to the above theory is assumed 
to be anisotropic

ds2 = −gttdt2 + grrdr2 + gxxdx jdx j + gzzdzdz, (4)

φ = φ(r), A = At(r)dt, ψ j = k jx j, j = 1 · · ·d − 2,

ψz = kz z, k j �= kz.

The anisotropic direction is selected along the z-direction. We 
regard the xi − x j plane as the “ab” plane and the z-direction 
as the “c”-axis in cuprates. The entropy density is given by s =
4π(gd−2

xx gzz)
1/2|r=rH . The electric charge density is given by q ≡

− J t = −√−g Z(φ)∂r At .
We impose a constant electric field in the xi direction with 

magnitude E , which will generate electric currents only along the 
x j direction. Let us consider a small perturbation in the black hole 
background

A j = −Et + δax j (r), gtx j = δgtx j (r),

grx j = gxxδhrx j (r), ψ = k jx j + δχ1. (5)

From Maxwell equation ∂r(
√−g Z(φ)F rxi ) = 0, we can define a 

conserved current J x j = −√−g grr gxx Z(φ)∂rax j + δgtx j gxxq. In the 
absence of a charge density, we only have a contribution to the 
current from the gauge field J x j ∼ ∂rax j . The conductivity can be 
determined based on the horizon regularity. In this case, we sim-
ply haves(√

gtt

grr
a′

x j

)′
= 0. (6)

Regularity at the horizon gives us

ax j = − E

4π T
ln(r − rH). (7)

At finite charge density, we must know the behavior of δgtx j at the 
horizon. In the presence of momentum dissipation, δgtx j will take 
a finite value at the horizon

δgtx j = Eq

k2
j Y H g

d−3
2

xx

∣∣∣∣
r=rH

, (8)

where we use the notation Y H = Y (φH ) and Z H = Z(φH ). There-
fore, the conserved current is obtained as

J x j =
(

g
d
2 −2
xx g

1
2
zz Z H E + Eq2

k2
j Y H g

d−1
2

xx

)∣∣∣∣
r=rH

. (9)

Then, the DC conductivity is given by

σ j j = J x j

E
=

(
g

d
2 −2
xx g

1
2
zz Z H + q2

k2
j Y H g

d−1
2

xx

)∣∣∣∣
r=rH

. (10)
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