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We present an alternative perspective on the see-saw mechanism for the neutrino mass, according to 
which the small neutrino mass is given as a difference of two large masses. This view emerges when an 
analogue of the Bogoliubov transformation is used to describe Majorana neutrinos in the Lagrangian of 
the see-saw mechanism, which is analogous to the BCS theory. The Bogoliubov transformation clarifies 
the natural appearance of Majorana fermions when C is strongly violated by the right-handed neutrino 
mass term with good CP in the single flavor model. Analyzing typical models with mR = 104 to 1015 GeV, 
it is shown that a hitherto unrecognized fine tuning of the order mν/mR = 10−15 to 10−26 is required to 
make the commonly perceived see-saw mechanism work in a natural setting, namely, when none of the 
dimensionless coupling constants are very small.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

When one discusses the natural appearance of the observed 
very small neutrino masses [1], one often refers to the see-saw 
mechanism [2–4] the precise form of which depends on specific 
models [5]. Those models are characterized by a very large mass 
scale and thus the natural appearance of the tiny neutrino mass is 
rather surprising. Naturalness is an esthetic notion and thus sub-
jective, and it should ultimately be determined by experiments. 
Currently active search for the support of the see-saw mechanism 
in the form of Majorana neutrinos is going, and we expect that this 
esthetical issue will be tested soon by experiments.

It may also be appropriate to examine the naturalness of the 
see-saw mechanism from a different perspective. We attempt to 
understand the natural appearance of the eigenstates of charge 
conjugation C, Majorana fermions, using an analogue of the Bo-
goliubov transformation when C is strongly violated by the right-
handed neutrino mass term which has good CP symmetry. We 
then recognize that the tiny neutrino mass in the see-saw mecha-
nism is given as a difference of two large masses, precise values of 
which depend on models. This suggests a view different from the 
conventional one, motivating us to ask whether the see-saw mech-
anism is “natural” in the sense emphasized, for example, in [6,7]. 
We show that a hitherto unrecognized fine tuning of the order 
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mν/mR is required to make the see-saw mechanism work in a nat-
ural setting.

We first recapitulate the basic properties of Majorana fermions, 
namely, charge conjugation and parity. The Majorana fermions are 
defined by the condition

ψ(x) = Cψ̄ T (x) = ψc(x),

where C = iγ 2γ 0 stands for the charge conjugation matrix [8]; 
the quantity Cψ̄ T (x) is directly evaluated for a given ψ(x) while 
ψc(x) is evaluated by a unitary charge conjugation operator, and 
the agreement of these two expressions provides an important 
consistency check in our analysis (for example, of eq. (26) below). 
We start with a generic neutral Dirac fermion, which is denoted by 
ν(x) for later convenience, and define the combinations

ψ±(x) = 1√
2
[ν(x) ± νc(x)],

which satisfy

ψc±(x) = ±ψ±(x),

showing that ψ+(x) and ψ−(x) are Majorana fields. We treat the 
fermion with ψc−(x) = −ψ−(x) also as a Majorana fermion.

It is well-known [8,9] that, in theories where the fermion num-
ber is conserved, discrete symmetries such as parity can generally 
be defined with an arbitrary phase freedom δ,

ν(x) → eiδγ 0ν(t,−�x).
http://dx.doi.org/10.1016/j.physletb.2017.01.069
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The conventional parity ν(x) → γ 0ν(t, −�x) and νc(x) → −γ 0νc(t,
−�x) for the Dirac fermion (in the following called “γ 0-parity”) cor-
responds to δ = 0 and thus satisfying P 2 = 1. One can confirm that 
parity for an isolated single Majorana fermion is consistently de-
fined only by “iγ 0-parity” with δ = π/2, i.e. ν(x) → iγ 0ν(t, −�x)
and νc(x) → iγ 0νc(t, −�x), namely by (see Ref. [9])

ψ±(x) → iγ 0ψ±(t,−�x). (1)

This definition is consistent with the reality of ψ±(x) in the Majo-
rana representation, where γ 0 is hermitian but purely imaginary. 
The phase freedom δ is thus fixed by the Majorana condition and 
P2 = −1. We are interested in Majorana fermions, therefore we ex-
clusively use this “iγ 0-parity” in this paper.

2. Model Lagrangian and Bogoliubov transformation

We analyze the hermitian Lorentz invariant quadratic La-
grangian for a single flavor of the neutrino, which is a minimal 
extension of the Standard Model,

L = ν L(x)iγ μ∂μνL(x) + nR(x)iγ μ∂μnR(x)

− mνL(x)nR(x) − (mL/2)νT
L (x)CνL(x)

− (mR/2)nT
R(x)CnR(x) + h.c., (2)

where nR(x) is a right-handed analogue of νL(x), and m, mL , and 
mR are real parameters. We define a new Dirac-type variable

ν(x) ≡ νL(x) + nR(x) (3)

in terms of which the above Lagrangian is re-written as

L = (1/2){ν(x)[i/∂ − m]ν(x) + νc(x)[i/∂ − m]νc(x)}
− (ε1/4)[νc(x)ν(x) + ν(x)νc(x)]
− (ε5/4)[νc(x)γ5ν(x) − ν(x)γ5ν

c(x)], (4)

where ε1 = mR +mL and ε5 = mR −mL . The C and P transformation 
rules for ν(x) are defined by

νc(x) = C ν̄T (x), ν p(x) = iγ 0ν(t,−�x), (5)

and thus ν(x) ↔ νc(x) under C and νc(x) → iγ 0νc(t, −�x) under P; 
CP is given by

νcp(x) = iγ 0C ν̄T (t,−�x). (6)

The above Lagrangian (4) is CP conserving, although C and P 
(iγ 0-parity) are separately broken by the last term.

In defining Majorana fermions, the exact meaning of the charge 
conjugation operation C is crucial. In literature (see, e.g., Ref. [5]), 
one customarily defines the charge conjugation in the Lagrangian 
(2) by

(νL(x))c = C ν̄T
L (x), (nR(x))c = Cn̄T

R(x). (7)

We must emphasize that the symbols (νL(x))c and (nR(x))c are not 
to be understood as “transformation laws” but rather as mnemon-
ics for the quantities on the right-hand side, since a unitary op-
erator to generate those transformations does not exist. This can 
be clearly seen by the following contradictions. If one assumes 
the action of the unitary charge conjugation operator, one has 
νL(x) = [(1 − γ5)/2]νL(x) and

(νL(x))c = CνL(x)C† = [(1 − γ5)/2]CνL(x)C†

= [(1 − γ5)/2]C ν̄T
L (x),

which imply (νL(x))c = 0, and similarly for nR(x). Moreover, the 
well-known C- and P-violating weak interaction Lagrangian is writ-
ten as

LW = (g/
√

2)ēLγ
μW (−)

μ (x))νL + h.c.

= (g/
√

2)ēLγ
μW (−)

μ (x))[(1 − γ5)/2]νL + h.c. (8)

If one assumes again (7) as transformation laws, the first expres-
sion implies that LW is invariant under C, while the second ex-
pression implies LW → 0. CP (or CPT) is the only reliable way to 
define a chiral antiparticle. More comments on this issue will be 
given later.

The transformation rules (5) for the Lagrangian (4) are operato-
rially well defined, and they imply

νc
L,R(x) =

(
1 ∓ γ5

2

)
νc(x) = CνT

R,L(x), (9)

as well as

ν
p
L,R(x) = iγ 0νR,L(t,−�x), (10)

namely, doublet representations of C and P for νL(x) and nR(x), 
which are not symmetries of (2) for mL 	= mR . The CP transfor-
mation

ν
cp
L,R(x) = iγ 0CνT

L,R(t,−�x) (11)

is an exact symmetry of the original Lagrangian (2). We thus 
adopt the Lagrangian (4) and the (unitary) C and P transforma-
tions (5) as the basis of our analysis, which defines a prototype 
of the Lagrangian of the see-saw mechanism [2–5] for mL 
 0, 
where the right-handed Majorana-type mass mR is added to the 
Dirac fermion with mass m. An analogy of the Lagrangian (4) with 
the Bardeen–Cooper–Schrieffer (BCS) theory was noted some time 
ago [10].

To solve (4), we apply an analogue of Bogoliubov transforma-
tion, (ν, νc) → (N, Nc), defined as(

N(x)
Nc(x)

)
=

(
cos θ ν(x) − γ5 sin θ νc(x)
cos θ νc(x) + γ5 sin θ ν(x)

)
, (12)

with sin 2θ = (ε5/2)/
√

m2 + (ε5/2)2. We can then show that the 
anticommutators are preserved, i.e.,

{N(t, �x), Nc(t, �y)} = {ν(t, �x), νc(t, �y)},
{Nα(t, �x), Nβ(t, �y)} = {Nc

α(t, �x), Nc
β(t, �y)} = 0, (13)

and thus it satisfies the canonicity condition of the Bogoliubov 
transformation. A transformation analogous to (12) has been suc-
cessfully used in the analysis of neutron-antineutron oscillations 
[11].

After the Bogoliubov transformation, which diagonalizes the La-
grangian with ε1 = 0, L in (4) becomes

L = 1

2

[
N(x) (i/∂ − M) N(x) + Nc(x) (i/∂ − M) Nc(x)

]
− ε1

4
[Nc(x)N(x) + N(x)Nc(x)], (14)

with the mass parameter

M ≡
√

m2 + (ε5/2)2. (15)

This implies that the Bogoliubov transformation maps the original 
theory to a theory characterized by the new large mass scale M
(ε5/2 corresponds to the energy gap). The Bogoliubov transforma-
tion maps a linear combination of a Dirac fermion and its charge 
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