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This short note is devoted to deriving scaling but hyperscaling violating solutions in a generalised 
Einstein–Maxwell-Dilaton theory with an arbitrary number of scalars and vectors. We obtain analytic 
solutions in some special case and discuss the physical constraints on the allowed parameter range in 
order to have a well-defined holographic ground-state solution.
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1. Introduction

The application of the holographic duality towards understand-
ing theories that are at finite density and may be in the uni-
versality class of strongly coupled systems has been made much 
progress [1,2]. Of particular interests is quantum criticality, which 
is crucial for interpreting a wide variety of experiments. A large 
class of critical points in condensed matter are characterised by 
two scaling exponents, known as the dynamical critical exponent 
z and the hyperscaling violation exponent θ .

Such exponents appear in holographic saddle point solutions. 
Lifshitz scaling solutions have been discussed first in [3] (for a re-
cent review see [4]), while hyperscaling violating solutions were 
recognised in [5,6].

The duality provides a natural framework to describe those 
quantum critical systems. The metric in the gravitational dual de-
scription takes the form

ds2 = r
2θ
d

(
−dt2

r2z
+ L2dr2 + d�x2

r2

)
, (1.1)

with d�x2 = dx2
1 + · · · + dx2

d and d the number of spatial dimensions 
in the field theory. The scaling geometry possesses the property
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r → λ r, t → λz t, xi → λ xi, ds2 → λ
2θ
d ds2, (1.2)

where λ is a dimensionless constant. Therefore, z characterises 
the deviation from the Lorentz invariant and θ characterises the 
deviation from the scale invariant limit. Aspects of hyperscaling vi-
olating geometry and its realisation in various gravity models have 
been widely discussed in the literature, see for example [5–11]
and references therein. Those geometries with hyperscaling viola-
tion are usually considered as the infrared (IR) limit of some kind 
of bulk solutions that asymptotically approach AdS in the bound-
ary. Due to the presence of nontrivial scaling exponents, there are 
novel behaviours relative to the AdS counterpart, see for exam-
ple [12–27]. In particular, it was found that the recent pnictide 
data [28] can be well described by using holographic DBI magne-
toresistance at quantum criticality with hyperscaling violation [29].

It is well known that hyperscaling violating solutions can be 
generated in the Einstein–Maxwell-Dilaton (EMD) theory where 
gravity couples to one real neutral scalar and one U(1) gauge 
field [5,6]. We would like to generalise the simple EMD theory to 
involve an arbitrary number of scalars and vectors. We will con-
sider a bottom-up theory where the theory parameters can be 
turned continuously at the level of effective holographic theory. 
Our motivation are two folds. Firstly, such kind of theory is com-
mon by consistent truncation of various supergravity theories in 
higher dimensions [29–34]. We would like to describe possible ge-
ometries in those general setups. Such theory would then be either 
embedded in string theory/supergravity, or asymptotic to AdS. On 
the other hand, there have been recently a number of holographic 
models using multiple vectors and scalars, as they typically lead to 
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richer physics [35–38]. For example, multiple U(1) gauge fields in 
the bulk will source multiple conserved currents in the dual field 
theory. Conductivities in such case have been discussed in [39,40], 
although their physical interpretations are not yet very clear.

We discuss the conditions for the existence of purely scaling 
geometry in our theory. It turns out that the existence of scal-
ing solutions in general imposes non-trivial constraints on theory 
parameters. Then we use the established formulae to the special 
case where the scalars take the standard kinetic term. We can find 
exact black brane solutions with arbitrary values of hyperscaling 
violation exponent θ and dynamical exponent z.

The rest of the paper is organised as follows. In section 2 we 
introduce the gravity theory and derive the equations of motion. 
Section 3 is devoted to discussing the hyperscaling violating ge-
ometry. We give the conditions for the existence of such scaling 
solutions, which in general can not be solved analytically due to 
the scalar metric in front of the kinetic terms of scalars. Section 4
presents a set of exact solutions at extremal case as well as finite 
temperature case. The constraints on the parameter range of (θ, z)
are discussed in more details. An example from a top-down setup 
by using toroidal compactifications is given. We conclude in sec-
tion 5.

2. The general theory and equations of motion

We consider an effective gravitational theory that involves an 
arbitrary number of scalars and vector fields at the two-derivative 
level. The action reads

S =
∫

dd+2x
√−g

⎡
⎣R− 1

2

M∑
i, j=1

Gi j(φ)∇μφi∇μφ j + V (φ)

−1

4

N∑
I=1

Z I (φ)F 2
I

]
, (2.1)

which contains M scalars φi and N massless vectors AI . We also 
generalise it a bit by allowing a non-trivial symmetric metric 
Gi j(φ) for the scalars.

From the action (2.1) we derive the equations of motion for the 
scalar φi

∇μ

⎛
⎝ M∑

j=1

Gi j(φ)∇μφ j

⎞
⎠ − 1

2

M∑
j,k=1

∂G jk(φ)

∂φi
∇μφ j∇μφk + ∂V (φ)

∂φi

− 1

4

N∑
I=1

∂ Z I (φ)

∂φi
F 2

I = 0 , (2.2)

and vector AI

∇μ(Z I (φ)F μν
I ) = 0 , (2.3)

with i, j, k = 1, . . . , M and I = 1, . . . , N . The equations of motion 
for the metric gμν are given by

Rμν − 1

2
Rgμν = 1

2

M∑
i, j=1

Gi j(φ)

(
∇μφi∇νφ j − 1

2
gμν∇ρφi∇ρφ j

)

+ 1

2
gμν V (φ)

+ 1

2

N∑
I=1

Z I (φ)

(
F Iμρ F Iν

ρ − 1

4
gμν F 2

I

)
. (2.4)

We are interested in the hyperscaling violating solution in the 
generalised EMD theory. We further simplify the discussion by spe-
cialising to the diagonal scalar metric case, i.e., only turn on the 

diagonal metric Gii(φ). We approximate the scalar couplings have 
exponential asymptotics as in supergravity,

Gii ∼ e �τi · �φ, V ∼ V 0 e−�δ· �φ, Z I ∼ e �γI · �φ,

with V 0 a positive constant. Here we have used a vector nota-
tion for M scalars with �φ = (φ1, φ2, · · · , φM). So the theory we are 
considering depends on (M + N + 1) M-vectors �τi , �γI and �δ. Those 
vectors will be related to the scaling exponents of the solutions, 
i.e., z and θ .

In this note we focus on the case with two spatial bound-
ary dimensions (d = 2) for simplicity, but our discussion can be 
generalised to higher dimensions straightforwardly. For the homo-
geneous and isotropic case the bulk metric as well as matter part 
takes the generic form,

ds2 = −D(r)dt2 + B(r)dr2 + C(r)(dx2
1 + dx2

2) ,

φi = φi(r), A = AIt(r)dt .
(2.5)

Substituting the ansatz into the equations of motion (2.2), (2.3)
and (2.4), one obtains the concrete equations of motion for each 
field

1√
B DC

(√
D

B
Ce �τi · �φφ′

i

)′
− 1

2B

M∑
j=1

e �τ j · �φτ jiφ
′ 2
j

+ 1

2B D

N∑
I=1

e �γI · �φγI i A′ 2
It − V 0δie

−�δ· �φ = 0 , (2.6)

(
e �γI · �φ C√

B D
A′

It

)′
= 0 , (2.7)

2D ′′

D
− 2C ′′

C
−

(
B ′

B
− C ′

C
+ D ′

D

)
D ′

D
+ B ′C ′

BC

− 2

D

N∑
I=1

e �γI · �φ A′ 2
It = 0 , (2.8)

2C ′′

C
−

(
B ′

B
+ C ′

C
+ D ′

D

)
C ′

C
+

M∑
i=1

e �τi · �φφ′ 2
i = 0 , (2.9)

D ′C ′

DC
+ 1

2

C ′ 2

C2
− 1

2

M∑
i=1

e �τi · �φφ′ 2
i + 1

2D

N∑
I=1

e �γI · �φ A′ 2
It

− B V 0e−�δ· �φ = 0 . (2.10)

Here we have used primes to denote radial derivatives. τ ji and γI i
denote the i-th component of the vectors �τ j and �γI , respectively.

3. General scaling solutions

We are interested in the hyperscaling violation geometry with 
the following scaling ansatz

ds2 = rθ

[
−dt2

r2z
+ L2 dr2 + d�x2

r2

]
, �φ = �κ log r, AIt = AIt(r) ,

(3.1)

where �κ is a constant M-vector.
Substituting the above ansatz into (2.7), we find

A′′
It − 1 − z − �γ · �κ

r
A′

It = 0, I = 1, . . . , N (3.2)

from which we can determine AIt :

At I (r) = μI + Q I r2−z− �γI ·�κ , �γI · �κ 		= 2 − z . (3.3)
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