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We describe an application of the Monte Carlo method to the Janus deformation of the black brane 
background. We present numerical results for three and five dimensional black Janus geometries 
with planar and spherical interfaces. In particular, we argue that the 5D geometry with a spherical 
interface has an application in understanding the finite temperature bag-like QCD model via the AdS/CFT 
correspondence. The accuracy and convergence of the algorithm are evaluated with respect to the grid 
spacing. The systematic errors of the method are determined using an exact solution of 3D black Janus. 
This numerical approach for solving linear problems is unaffected initial guess of a trial solution and can 
handle an arbitrary geometry under various boundary conditions in the presence of source fields.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In this note, we shall consider various black Janus geometries 
numerically in three and five dimensional spaces. Janus geometries 
are dual to interface (conformal) field theories [1,2],1 which are 
well-controlled deformations of the AdS/CFT correspondence [4]. 
A black Janus geometry is dual to the finite temperature version 
of the corresponding interface (conformal) field theory. While an 
exact solution for the 3D black Janus geometry is available [5,6], 
we shall numerically reconsider it for a geometric interpretation of 
Monte Carlo (MC) method. In five dimensions, we shall consider 
two cases: one with a planar interface and the other with a spher-
ical interface. In the latter, the boundary value of the scalar field, 
whose exponential is corresponding to the Yang–Mills (YM) cou-
pling squared divided by 4π , has a smaller value inside the sphere 
than outside. Its dual field theory, whose finite-temperature coun-
terpart shall be considered below, resembles the MIT bag model in 
QCD [7].
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1 For a recent discussion of Janus systems, see [3], where one may find a rather 
comprehensive list of references on the subject.

As for the numerical analysis, we shall use the standard MC 
method [8] (see [9] for a general review) to solve the scalar field 
equations in the black brane background which are elliptic par-
tial differential equations (PDEs). The choice of the MC method is 
conceptually motivated by the following considerations. In the MC 
method for a PDE, an estimate to the solution at each site is evalu-
ated with an average of samples of boundary values by generating 
a sufficiently large number of random walks each of which starts 
from the original site and ends at one of the boundary sites. The 
direction of the movement in each step of the random walk will 
be chosen randomly with respect to the probabilities determined 
by the associated PDE. As we will see, the probabilities at each 
site fully reflect the underlying geometry and hence these random 
walks may be regarded as processes exploring geometric land-
scapes rather efficiently. This feature coins the name of “geometric 
MC method” and is the reason why this MC method provides an 
interesting framework for the numerical study of gravity problems. 
Adding to this, the independence between random walks allows 
high performance parallel computing to speed up the convergence 
of the MC simulations. Along with improved computational capa-
bilities, this MC method has some advantages compared to other 
numerical methods. One can use our MC method on gravitational 
problems with arbitrary geometries with various boundary con-
ditions. This approach for solving linearized equations does not 
require any trial configuration.
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This paper is organized as follows. In sec. 2, we describe a theo-
retical background for the linearized black Janus. Numerical details 
of our geometric MC method are discussed in sec. 3. In sec. 4, we 
present our numerical analysis of 5D black Janus with planar and 
spherical interfaces, followed by concluding remarks in sec. 5.

2. Black Janus deformations to the leading order

In this note, we shall consider the Einstein-scalar system with 
a negative cosmological constant described by the action

I = − 1

16πG

∫
ddx

√
g

[
R − gab∂aφ∂bφ + (d − 1)(d − 2)

�2

]
(2.1)

where � is the AdS radius scale which we shall set to be unity for 
our numerical study below. For d = 3 and 5, this system can be 
consistently embedded into the type IIB supergravity and, hence, 
via the AdS/CFT correspondence, microscopic understanding of 
dual CFTd−1 can be given [1]. In particular, in five dimensions, the 
dual CFT4 is identified with the well known N = 4 SU(N) super-
Yang–Mills (SYM) theory [4]. The scalar field originated from the 
dilaton of the type IIB supergravity is dual to the Lagrange-density 
operator of the SYM theory, whose boundary value corresponds to 
the logarithm of the YM coupling squared divided by 4π in the 
field-theory side.

The finite-temperature black brane background is given by

ds2 = 1

z2

[
(1 − zd−1)dτ 2 + dz2

1 − zd−1
+ dx2

1 + dx2
2 + · · · + dx2

d−2

]

(2.2)

with a trivial scalar field φ = φ0. By requiring the regularity of 
geometry around z = 1 in (τ , z) space, the period of τ -direction 
angle variable can be identified, whose inverse is the Gibbons–
Hawking temperature of the boundary system, T = (d − 1)/(4π�). 
This black brane background is dual to the finite-temperature ver-
sion of CFTd−1 on R × R

d−2. The temperature may be scaled to 
other values by appropriate scaling transformations but it plays a 
role of unique reference scale in this pure black brane background.

In this work, we shall consider various Janus deformations of 
the above black brane background. The Janus deformation in the 
bulk involves a scalar field whose boundary values jump from one 
to another across an interface. The dual boundary system is de-
scribed by an interface CFT where its original CFT is deformed by 
an exactly marginal operator which is dual to the bulk scalar field. 
From the viewpoint of the boundary, its coupling jumps across the 
interface from one value to another whose detailed identification is 
subject to the standard dictionary of the AdS/CFT correspondence. 
In d = 3, to the leading order of the deformation parameter, the 
profile of the scalar field is governed by

(1 − X2)∂X

[
(1 − X2)∂Xφ

]
+ 4p(1 − p)∂2

pφ − 4p∂pφ = 0 (2.3)

where we introduce new coordinates (X , p) by X = tanh x1 and 
p = z2. Here we shall consider the case of a single interface which 
is located at x1 = X = 0. Since the constant solution φ = φ0 can be 
added freely, the Janus boundary condition can be given as

φ(X,0) = γ sign(X) (2.4)

where γ is our deformation parameter referred to as an ‘inter-
face coefficient’. Of course one may consider the case of multiple 
interfaces [6] but here we would like to focus on the case of a sin-
gle interface. Since the leading order is linear, we shall omit the 
γ dependence for the simplicity of our presentation. Of course 
the validity of our approximation requires γ � 1 and our nu-
merical result for the scalar profile should be understood with an 

extra multiplication factor of γ throughout this note. The bound-
ary condition at X = ±1 then becomes φ(±1, p) = ±1. On the 
horizon side, one may impose the ‘Neumann boundary condition’ [√

1 − p ∂pφ(X, p)
]∣∣

p=1 = 0. Note that the (τ , p) plane of the black 
brane geometry has a shape of an infinite sized disk whose center 
is located at p = 1. Near this center 1 − p ∼ 0, the distance from 
the center is approximately given by s ∼ √

1 − p. Then the above 
boundary condition follows from the Neumann boundary condi-
tion ∂sφ

∣∣
s=0 = 0 with respect to the distance s, which ensures the 

smoothness of our scalar profile at s = 0. Below we shall replace 
this boundary condition by a smoothness condition of the scalar 
field at p = 1 which basically allows us to Taylor-expand φ(X, p)

around p = 1 to some orders, whose details will be further speci-
fied in our numerical study below. We shall refer to this as a ‘free 
boundary condition’.

Now note that our system possesses a Z2 symmetry φ(X, p) =
−φ(−X, p). So the problem can be reduced to solving the differ-
ential equation restricted in the region of X ≥ 0 with the boundary 
condition at X = 0 specified by φ(0, p) = 0. In this d = 3 case, an 
exact solution can be found as [5]

φ = γ
X√

X2 + p(1 − X2)
(2.5)

Even an analytic black Janus solution including the full gravita-
tional back-reaction has been found in [5]. Thus this 3D problem 
will serve as a nice testing ground for the methods we use for our 
numerical study below.

Now let us turn to our main theme which is the d = 5 case. This 
is relevant to the problem of understanding properties of N = 4
SYM theory. Especially in its finite temperature version, it has 
been argued to be useful in understanding certain aspects of the 
real-world QCD although its full justification is not that straight-
forward [10].

Again in the probe limit, the 5D scalar equation is reduced to(
∂2

x1
+ ∂2

x2
+ ∂2

x3

)
φ + 4p(1 − p2)∂2

pφ − 4(1 + p2)∂pφ = 0 (2.6)

where p = z2 as before. We shall first study a Janus deforma-
tion involving a single planar interface located at x1 = 0 which 
has translational symmetries along x2 and x3 directions. Thus with 
∂x2φ = ∂x3φ = 0, the scalar profile is governed by

(1 − X2)∂X

[
(1 − X2)∂Xφ

]
+ 4p(1 − p2)∂2

pφ − 4(1 + p2)∂pφ = 0

(2.7)

where we introduce X by X = tanh x1 as before. For this pla-
nar interface, we have the boundary conditions φ(0, p) = 0, 
φ(X, 0) = φ(1, p) = 1 together with the Neumann boundary con-
dition 

[√
1 − p ∂pφ(X, p)

]∣∣
p=1 = 0, which can be replaced by the 

free boundary condition at p = 1 as before. We shall solve the 
equation for the half region of X ≥ 0 utilizing the underlying Z2
symmetry. Below we shall pay a particular attention to the hori-
zon profile, φ(X, 1), of our scalar field to see how the horizon is 
colored by the scalar hair.

Next we would like to consider a bag-like configuration as 
an application of the Janus deformation of the black brane back-
ground. For this, we introduce a boundary radial coordinate r de-

fined by r =
√

x2
1 + x2

2 + x2
3 and impose the boundary condition 

φ(r, 0) = −γ θ(R −r) where θ(x) denoting the Heaviside step func-
tion. This boundary condition describes a bag-like model where 
the YM coupling g2

Y M = 4π eφ(r,0)+φ0 in the region of r ≤ R be-
comes weaker than the one outside the bag. Later we shall argue 
that hadrons can be realized by a fundamental (QCD) string cor-
responding to a Wilson line connecting quark to anti-quark in the 
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