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Recently, a general result for evaluating the path integral at one loop was obtained in the form of 
the Universal One-Loop Effective Action. It may be used to derive effective field theory operators of 
dimensions up to six, by evaluating the traces of matrices in this expression, with the mass dependence 
encapsulated in the universal coefficients. Here we show that it can account for loops of mixed heavy–
light particles in the matching procedure. Our prescription for computing these mixed contributions 
to the Wilson coefficients is conceptually simple. Moreover it has the advantage of maintaining the 
universal structure of the effective action, which we illustrate using the example of integrating out a 
heavy electroweak triplet scalar coupling to a light Higgs doublet. Finally we also identify new structures 
that were previously neglected in the universal results.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Matching from an ultraviolet (UV) theory to a low-energy ef-
fective field theory (EFT) can be performed using either Feynman 
diagrams or functional methods. For the latter approach, Gail-
lard [1] and Cheyette [2] introduced a manifestly gauge-covariant 
method of performing the calculation, using a covariant deriva-
tive expansion (CDE). This elegant method simplifies evaluating the 
quadratic term of the heavy fields in the path integral to obtain the 
low-energy EFT, and was revived recently by Henning, Lu and Mu-
rayama (HLM) [3]. In particular, HLM pointed out that under the 
assumption of degenerate particle masses they could evaluate the 
momentum dependence of the coefficients that factored out of the 
trace over the operator matrix structure, without specifying the 
specific UV model. In Ref. [4] some of us showed that this univer-
sality property can be extended without any assumptions on the 
mass spectrum, to obtain a universal result for the one-loop ef-
fective action for operators up to dimension six. There the loop 
integrals have been computed for a general mass spectrum once 
and for all. This Universal One-Loop Effective Action (UOLEA) is a 
general expression that may then be applied in any context where 
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a one-loop path integral needs to be computed, as for example in 
matching new physics models to the Standard Model (SM) EFT.1

Functional methods require the term quadratic in the heavy 
fields to be integrated out, corresponding to loops of heavy fields 
with light particle external legs in the Feynman diagram approach. 
In addition to these heavy–heavy loops, there could also be mixed 
heavy–light contributions to matching. These are typically calcu-
lated using Feynman diagrams [12,15–17] but can also be ac-
counted for in the functional approach [18–20]. The purpose of 
this paper is to show how they can be computed in the UOLEA.

Compared to previous functional methods [18–20], our pre-
scription for treating mixed heavy–light contributions is relatively 
simple and transparent: in addition to the usual expansion of 
the heavy fields around their classical solution, we also separate 
the light fields into classical and quantum parts, and extend the 
quadratic term to also include quantum fluctuations of the light 
fields. This essentially amounts to computing the 1PI effective ac-
tion for the full theory, from which the Wilsonian effective La-
grangian, namely the low-energy EFT, can be extracted. Similarly 
to the heavy–heavy case, the general structure and universal coef-
ficients of the UOLEA combine to yield the EFT Wilson coefficients 

1 For recent matching calculations see for example Refs. [3–12]. The SM EFT is 
reviewed in Refs. [13,14].
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after evaluating the matrix traces. But in this extended case, the 
universal coefficients contain parts that are in the full 1PI effec-
tive action but not in the EFT, diagrammatically corresponding to 
tree-generated operator insertions in EFT loops. These must be 
subtracted by a well-defined procedure, which we describe. Our 
prescription has the advantage of maintaining the universal struc-
ture of the UOLEA so that in principle, one needs not apply the 
CDE starting from the beginning for every model.

We also find that in certain cases, for example when includ-
ing vector gauge boson contributions, the matrix structure may 
contain an extra covariant derivative part that is not taken into ac-
count in the pre-evaluated form of the UOLEA; Refs. [3,4] assume 
no such additional structure in its derivation. These new contribu-
tions then have to be computed separately for each specific case 
using the CDE method to evaluate the path integral from the be-
ginning. However, it is possible in principle to do the calculation 
in a model-independent way, once and for all, which would ex-
tend the UOLEA to include such structures. Such an extension will 
be addressed in future work [21].

In the next Section we give a brief introduction to the CDE 
method and the UOLEA. In Section 3 we outline the procedure 
for including mixed heavy–light contributions to dimension-6 op-
erators with the UOLEA. As an example, in Section 4 we demon-
strate how to obtain heavy–light contributions to matching a heavy 
electroweak triplet scalar model to the SM EFT, and discuss the 
extension needed to incorporate gauge coupling-dependent contri-
butions. Finally we conclude in Section 5. Some useful formulae 
are collected in the Appendix.

2. The Universal One-Loop Effective Action

We begin by describing the Gaillard–Cheyette Covariant Deriva-
tive Expansion (CDE) method [1,2] for evaluating the path inte-
gral.2 The UV Lagrangian for a model composed of light and heavy 
fields, that we collectively denote as the multiplets φ and � re-
spectively, can be written as

LUV[φ,�] ⊃ L[φ]+� · F [φ]+ 1

2
�(P 2 −M2 −U ′[φ])�+O(�3) ,

(2.1)

where L[φ] is the light field part of the Lagrangian and the gauge-
covariant derivative Dμ is written as Pμ ≡ iDμ . M is a diagonal 
mass matrix. Eq. (2.1) is written for a real scalar �; in general the 
exact form depends on the nature of �. The terms involving light 
fields coupling linearly and quadratically to � are represented by 
the matrices F [φ] and U ′[φ] respectively.

Beginning from an action S[φ, �], we can expand around the 
minimum and evaluate the path integral over �. For example in 
the case of real scalar fields the effective action can be written as

eiSeff[φ] =
∫

[D�]eiS[φ,�]

=
∫

[Dη]ei

(
S[φ,�c ]+ 1

2
δ2 S
δ�2

∣∣∣
�=�c

η2+O(η3)

)

≈ eiS[φ,�c ]
[

det

(
− δ2 S
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�=�c

)]− 1
2

= e
iS[φ,�c ]− 1

2 Tr ln

(
− δ2 S
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∣∣∣
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)
,

2 See Ref. [3] for a review and more technical details.

where we used � = �c +η and we have defined �c as the classical 
solution to δS

δ�

∣∣
�=�c

= 0. This is applicable to bosons or fermions. 
In general the result is a one-loop effective action of the form

Seff
1-loop = icsTr ln

(
−P 2 +M2 + U

)
. (2.2)

The constant cs depends on the heavy field �. If it is a real scalar, 
complex scalar, Dirac fermion, gauge boson or Fadeev–Popov ghost 
then it takes the value 1/2, 1, −1/2, 1/2 or −1 respectively [3]. 
We note that the U matrix in Eq. (2.2) is obtained after a suit-
able rearrangement to the required form. The relation of U to 
the quadratic term U ′ of the original Lagrangian depends on the 
species of �, i.e. on whether we are dealing with a real or com-
plex scalar, fermion, gauge boson, and so on. For more details we 
refer the reader to Ref. [3]. As we will see later Refs. [3,4] have the 
implicit assumption that U does not contain any covariant deriva-
tives acting openly to the right.

After evaluating the trace over spacetime by inserting a com-
plete set of spatial and momentum eigenstates, we have a trace 
“tr” over internal indices (gauge, flavour, spinor, etc.):

Seff
1-loop = ics

∫
ddx

∫
ddq

(2π)d
tr ln

(
−(Pμ − qμ)2 +M2 + U

)
,

where d = 4 −ε in dimensional regularization. Before manipulating 
the logarithm to obtain an expansion in terms of higher dimension 
operators, we shift the momentum in the integral using the covari-
ant derivative by inserting factors of e±Pμ∂/∂qμ :

Leff
1-loop = ics

∫
ddq

(2π)d
tr ln[ePμ∂/∂qμ(−(Pμ − qμ)2

+M2 + U )e−Pμ∂/∂qμ ] .
This ensures that Pμ ’s only appear in commutators, and the 
expansion will only involve manifestly gauge-covariant pieces 
throughout — that is the gauge field strengths, covariant deriva-
tives and the SM fields encoded in the matrix U (x):

Leff
1-loop = ics

∫
ddq

(2π)d
tr ln[−(G̃νμ

∂

∂qν
+ qμ)2 +M2 + Ũ ] , (2.3)

where

G̃νμ ≡
∞∑

n=0

n + 1

(n + 2)! [Pα1 , [...[Pαn , G ′
νμ]]] ∂n

∂qα1 ...qαn

,

Ũ ≡
∞∑

n=0

1

n! [Pα1 , [...[Pαn , U ]]] ∂n

∂qα1 ...qαn

,

and we defined G ′
νμ as the field strength given by [Pν, Pμ] =

−G ′
νμ . This covariant formulation is the essence of the CDE 

method.
In order to obtain the coefficients and structure of the higher 

dimension operators, there are various approaches one can take. 
For degenerate masses one can easily expand the action in Eq. (2.3)
by integrating once its derivative with respect to the common 
mass scale m2, as discussed in [3], or by making use of the Baker–
Campbell–Hausdorff (BCH) formula as in [2,8]. However, for the 
general case of possibly non-degenerate masses, the mass matrix 
no longer commutes with the other matrix structures and the 
factorisation of the momentum integral from this structure is no 
longer trivial. To perform the expansion, one may use the BCH, 
or introduce an auxiliary parameter ξ that multiplies the diagonal 
mass matrix M, defined as

M = ξ · Diag(mi) , (2.4)
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