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Recent measurements have revealed a significant suppression of multipion Bose–Einstein correlations in 
heavy-ion collisions at the LHC. The suppression may be explained by postulating coherent pion emission. 
Typically, the suppression of Bose–Einstein correlations due to coherence is taken into account with the 
coherent state formalism in quantum optics. However, since charged pion correlations are most often 
measured, the additional constraint of isospin conservation, which is absent in quantum optics, needs 
to be taken into account. As a consequence, correlations emerge between pions of opposite charge. 
A calculation of the correlations induced by isospin conservation of coherent emission is made for two, 
three- and four-pion correlation functions and compared to the data from the LHC.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Data from high energy collisions present a unique opportunity 
to study the possibility of quantum coherence at very high tem-
peratures. Bose–Einstein (BE) correlations of identical bosons are 
often used to search for coherent emission. In the presence of co-
herent emission, the strength of BE correlations is expected to be 
suppressed. A 6σ suppression of four-pion BE correlations was re-
cently found in Pb–Pb collisions at the LHC with ALICE [1].

Multibody Coulomb correlations have also been proposed as 
a potential source of the suppression. However, such correlations 
are unlikely to decrease with KT, in contrast with the observed 
decrease of the suppression at high KT. An important additional 
feature of BE correlations in high multiplicity collisions is their 
robustness to background correlations unrelated to quantum statis-
tics (QS) and final-state interactions (FSI). The QS and FSI correla-
tions for large emission volumes occur in a very narrow interval in 
relative momentum while all known background correlations pro-
duce easily distinguished broad correlations.

While two-pion BE correlations are most often measured exper-
imentally, they are insufficient to search for coherent emission. The 
unknown freeze-out distribution of particles produced in collisions 
causes two noteworthy uncertainties in a two-pion analysis. The 
first being the fraction of pions from short- compared to long-lived 
emitters, which characterizes a dilution of BE correlations. Sec-
ondly, the computation of FSI is done with an assumed freeze-out 
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distribution. Both of these uncertainties make it practically impos-
sible to determine the presence of coherent emission from two-
pion correlations alone. However, both uncertainties were found to 
largely cancel in the comparison of measured to built multipion BE 
correlations [1,2].

The effect of pion coherence on BE correlations is typically 
incorporated using the coherent state formalism of quantum op-
tics [3]. However, the fact that charged pion correlations are mea-
sured necessitates an extension of the quantum optics approach 
using the super-selection rule [4–8]. The resulting correlations in-
duced by isospin conservation of the coherent component occurs 
between all pion species. Isospin conservation of the chaotic com-
ponent also induces additional correlations in scenarios where the 
emission duration of the source is short [9]. In this letter, expres-
sions are derived for three- and four-pion correlations stemming 
from isospin conservation of pion coherent states. Calculations are 
presented for four different mixed-charge correlation functions and 
compared to the LHC data.

2. Formalism

The formalism of pion coherent states obeying the super-
selection rule and their application to BE correlations is given in 
detail in Refs. [7] and [8]. Coherent states are taken in the stan-
dard form as given by Eq. 8 of Ref. [7] and is also the same as 
various investigations of disoriented chiral condensates [10–12]. It 
is assumed that particle production can be split into a chaotic and 
a single coherent component, whose annihilation operators at a 
given momentum are given by b(p) and d(p), respectively.
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ai(p) = bi(p) + eid(p) (1)

e0 = cos(θ) (2)

e± = sin θ√
2

e±φ. (3)

The subscript i denotes the pion type (π+, π−, π0) for which one 
commonly introduces a unit vector, e, in three-dimensional isospin 
space. It is noteworthy to point out that the coherent component 
of pion production is assumed to conserve isospin independently 
from the chaotic component. The resulting isospin conservation in-
duced correlations are to be understood as a theoretical maximum 
which can be diminished if the two components do not indepen-
dently conserve isospin. The single particle inclusive momentum 
densities are given in the usual way

N(1)
i (p) ≡ Ep

d3Ni

d3p
= 〈a†

i (p)ai(p)〉

= 〈b†
i (p)bi(p)〉 + 〈|ei |2〉〈d†(p)d(p)〉
= N(1)

ch (p) + N(1)

coh(p), (4)

where Ep = √
m2 + p2. The chaotic and coherent components are 

given by ch and coh, respectively. An averaging over all possible 
orientations of the isospin vector is done in order to compute all 
final observables. The following integrals over the isospin vector 
will be needed to evaluate the two-, three-, and four-pion correla-
tion functions.

〈|e+|n〉 = 1

4π

∫
d cos(θ)dφ

[
sin θ√

2

]n

(5)

〈|e+|2〉 = 〈|e−|2〉 = 〈|e0|2〉 = 1

3
(6)

〈|e+|4〉 = 2

15
〈|e+|6〉 = 2

35
〈|e+|8〉 = 8

315
(7)

Integrals which contain a mixture of e+ and e− are identical to 
the ones given above. The total number of pions which are radi-
ated from the classical source at momentum p is given by |d(p)|2
while the coherent fraction of pions is defined as G(p) ≡ N(1)

coh(p)

N(1)(p)
=

1
3 |d(p)|2.

It is convenient to introduce the single particle Wigner function, 
split into chaotic and coherent components

fe,i(x, p) = fch(x, p) + |ei |2 fcoh(x, p), (8)

which provide the following two important links between the ex-
pectation values of the pionic field operators and an integration 
over the freeze-out hypersurface (σout),

〈b†
i (p1)bi(p2)〉 =

∫
σout

dσμpμ fch(x, p)e−iqx

≡ T12e−i�12

√
[1 − G(p1)][1 − G(p2)]N(1)

i (p1)N(1)
i (p2), (9)

〈d†
i (p1)di(p2)〉 = 〈|ei |2〉

∫
σout

dσμpμ fcoh(x, p)e−iqx

≡ t12e−iφ12

√
G(p1)G(p2)N(1)

i (p1)N(1)
i (p2), (10)

where q = p1 − p2 and p = (p1 + p2)/2. The pair exchange magni-
tudes of the chaotic and coherent components are denoted by Tij
and ti j , respectively. For the expectation value of two or more co-
herent pions with an imbalance of operators at momentum p1 and 
p2, we have the relation

〈d†
ω1(p1)dω1(p2) · d†

ω2(p3)dω2(p3) · . . . · d†
ωn (pn)dωn (pn)〉

= 〈
n∏
γ

|eωγ |2〉
[∫

dσμpμ fcoh(x, p)e−iq12x
]

〈d†(p)d(p)〉n−1 (11)

3. Three- and four-pion quantum statistics correlation functions

The multipion inclusive momentum density distributions is 
given in the usual way as

N(n)
ω1...ωn (p1, ..., pn) =

[
n∏

α=1

Epα

]
d3n Nω1...ωn∏n

α=1 d3pα

= 〈
n∏

α=1

a†
ωα

(pα)aωα (pα)〉, (12)

where ω represents the set of n elements, each of which denote a 
particular type of pion. For example, the set ω in the case of the 
π+π+π− distribution is given by ω1 = π+ , ω2 = π+ , ω3 = π− .

Experimentally, the multipion distributions are often projected 
onto the Lorentz invariant relative momentum and average pair 
transverse momentum defined by

Q n =

√√√√√−
n−1∑
i=1

n∑
j=i+1

(pi − p j)
2, (13)

KTn = |
n∑

i=1

pT,i|/n. (14)

The three- and four-pion QS distributions are decomposed into 
several components,

N(3)

i jk ≡ I1 + I2 + I3, (15)

N(4)

i jkl ≡ J1 + J2 + J3 + J4, (16)

where the I1 and J1 will be defined to contain the conventional 
QS correlations as prescribed by quantum optics. The other compo-
nents arise from the constraint of isospin conservation of coherent 
emission. Neglecting FSI, the components for three-pion correla-
tions are given in Eqs. (17)–(19) while those for four-pion correla-
tions are given in the appendix.

I1 = N(1)
i (p1)N(1)

j (p2)N(1)

k (p3)

+
∑
ω

δωαωβ

[
|〈b†

ωα
(pα)bωα (pβ)〉|2

+ 2�
{
〈b†

ωα
(pα)bωα (pβ)〉〈d†

ωα
(pβ)dωα (pα)〉

}]
N(1)

ωγ
(pγ )

+ 2δi jk

[
�

{
〈b†

i (p1)bi(p2)〉〈b†
i (p2)bi(p3)〉〈b†

i (p3)bi(p1)〉
}

+ 3�
{
〈d†

i (p1)di(p2)〉〈b†
i (p2)bi(p3)〉〈b†

i (p3)bi(p1)〉
}]

, (17)

I2 =
∑
α

〈b†
ωα

(pα)bωα (pα)〉

×
[
〈

∏
ε∈ω\{α}

d†
ωε

(pε)dωε (pε)〉 −
∏

ε∈ω\{α}
〈d†

ωε
(pε)dωε (pε)〉

]

+ 2
∑
ω

δωαωβ �
{[

〈d†
ωα

(pα)d†
ωγ

(pγ )dωα (pβ)dωγ (pγ )〉

− 〈d†
ωα

(pα)dωα (pβ)〉〈d†
ωγ

(pγ )dωγ (pγ )〉
]
〈b†

ωα
(pβ)bωα (pα)〉

}
,

(18)
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