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We propose a novel description for the Higgs mechanism by which a gauge boson acquires the mass. 
We do not assume spontaneous breakdown of gauge symmetry signaled by a non-vanishing vacuum 
expectation value of the scalar field. In fact, we give a manifestly gauge-invariant description of the Higgs 
mechanism in the operator level, which does not rely on spontaneous symmetry breaking. This enables 
us to discuss the confinement-Higgs complementarity from a new perspective. The “Abelian” dominance 
in quark confinement of the Yang–Mills theory is understood as a consequence of the gauge-invariant 
Higgs phenomenon for the relevant Yang–Mills–Higgs model.
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1. Introduction

The Brout–Englert–Higgs mechanism or Higgs phenomenon for 
short is one of the most well-known mechanisms by which gauge 
bosons [1] acquire their masses [2–4]. In the conventional wisdom, 
the Higgs mechanism is understood in such a way that the spon-
taneous symmetry breaking (SSB) generates mass for a gauge boson: 
The original gauge group G is spontaneously broken down to a 
subgroup H by choosing a specific vacuum as the physical state 
from all the possible degenerate ground states (the lowest energy 
states). Such SSB of the original gauge symmetry is caused by a 
non-vanishing vacuum expectation value (VEV) 〈φ〉 �= 0 of a scalar 
field φ governed by a given potential V (φ). For a continuous group 
G , there appear the massless Nambu–Goldstone bosons associated 
with the SSB G → H according to the Nambu–Goldstone theorem 
[5,6]. When the scalar field couples to a gauge field, however, the 
massless Nambu–Goldstone bosons are absorbed to provide the 
gauge boson with the mass. Thus, the massless Nambu–Goldstone 
bosons disappear from the spectrum. In a semi-classical treatment, 
the VEV 〈φ〉 is identified with one of the minima φ0 of the scalar 
potential V (φ), namely, 〈φ〉 = φ0 �= 0 with V ′(φ0) = 0.

Although this paper focuses on the Higgs phenomenon in the 
continuum space time, it is very instructive to learn the lattice 
results, because some non-perturbative and rigorous results are 
available on the lattice. Especially, the lattice gauge theory à la
Wilson [7] gives a well-defined gauge theory without gauge fix-
ing. The Elitzur theorem [8] tells us that the local continuous gauge 
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symmetry cannot break spontaneously, if no gauge fixing is in-
troduced. In the absence of gauge fixing, all gauge non-invariant 
Green functions vanish identically. Especially, the VEV 〈φ〉 of the 
scalar field φ is rigorously zero,

〈φ〉 = 0, (1)

no matter what the form of the scalar potential V (φ).
Therefore, we are forced to fix the gauge to cause the non-

zero VEV. Even after the gauge fixing, however, we still have the 
problem. Whether SSB occurs or not depends on the gauge choice. 
For instance, in non-compact U (1) gauge-Higgs model under the 
covariant gauge fixing with a gauge fixing parameter α, the SSB 
occurs 〈φ〉 �= 0 only in the Landau gauge α = 0, and no SSB oc-
cur 〈φ〉 = 0 in all other covariant gauges with α �= 0, as rigorously 
shown in [9,10]. In an axial gauge, 〈φ〉 = 0 for compact models 
[11]. In contrast, it can happen that 〈φ〉 �= 0 in a unitary gauge re-
gardless of the shape of the scalar potential. It is obvious that the 
VEV of the scalar field is not a gauge-independent criterion of SSB.

Even after breaking completely the local gauge symmetry G
by imposing a suitable gauge fixing condition, there can remain 
a global gauge symmetry H ′ of G . Such a global symmetry H ′ is 
called the remnant global gauge symmetry [12,13]. Only a remnant 
global gauge symmetry H ′ of the local gauge symmetry G can 
break spontaneously to cause the Higgs phenomenon [14]. How-
ever, such a subgroup H ′ is not unique and the location of the 
breaking in the phase diagram depends on H ′ in the gauge-Higgs 
model. The relevant numerical evidences are given on a lattice 
[13] for different H ′ allowed for various confinement scenarios. 
Moreover, the transition occurs in the regions where the Fradkin–
Shenker–Osterwalder–Seiler theorem [15,16] assures us that there 
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is no transition in the phase diagram. Thus, the spontaneous gauge 
symmetry breaking is a rather misleading terminology.

These observations indicate that the Higgs phenomenon should 
be characterized in a gauge-invariant way without breaking the 
original gauge symmetry. In this paper, we show that a gauge 
boson can acquire the mass in a gauge-invariant way without 
assuming spontaneous breakdown of gauge symmetry which is 
signaled by the non-vanishing VEV of the scalar field. We demon-
strate that the Higgs phenomenon occurs even without such SSB. 
The spontaneous symmetry breaking is sufficient but not necessary 
for the Higgs mechanism to work. Remember that quark confine-
ment is realized in the unbroken gauge symmetry phase with mass 
gap. Thus, the gauge-invariant description of the Higgs mechanism 
can shed new light on the complementarity between confinement 
phase and Higgs phase [17].

2. Yang–Mills–Higgs model and the conventional Higgs 
mechanism

In this paper we use the notation for the inner product of 
the Lie-algebra valued quantities A = A A T A and B = BA T A ; 
A · B := 2 tr(A B) = A ABB 2 tr(T A T B) = A ABA under the nor-
malization tr(T A T B) = 1

2 δAB for the generators T A of the Lie al-
gebra su(N) (A = 1, 2, . . . , dim G = N2 − 1) for a gauge group 
G = SU (N). The SU (N) Yang–Mills field Aμ(x) = A A

μ (x)T A has 
the field strength Fμν(x) = F A

μν(x)T A defined by Fμν := ∂μAν −
∂νAμ − ig[Aμ, Aν ].

We consider a Yang–Mills–Higgs theory specified by a gauge-
invariant action. The Yang–Mills field Aμ(x) = A A

μ (x)T A and the 
adjoint scalar field φ(x) = φA(x)T A obey the gauge transformation:

Aμ(x) → U (x)Aμ(x)U−1(x) + ig−1U (x)∂μU−1(x),

φ(x) → U (x)φ(x)U−1(x), U (x) ∈ G = SU (N). (2)

For concreteness, consider the G = SU (N) Yang–Mills–Higgs theory 
with the Lagrangian density:

LYMH = −1

4
Fμν(x) · Fμν(x)

+ 1

2
(Dμ[A ]φ(x)) · (Dμ[A ]φ(x))

− V (φ(x) · φ(x)), (3)

where we have defined the covariant derivative Dμ[A ] := ∂μ −
ig[Aμ, ·] in the adjoint representation. We assume that the adjoint 
scalar field φ(x) = φA(x)T A has the fixed radial length, which is 
represented by a constraint1:

φ(x) · φ(x) ≡ φA(x)φA(x) = v2. (4)

Notice that φ(x) · φ(x) is a gauge-invariant combination. There-
fore, the potential V as an arbitrary function of φ(x) · φ(x) is 
invariant under the gauge transformation. The covariant deriva-
tive Dμ[A ] := ∂μ − ig[Aμ, ·] transforms according to the ad-
joint representation under the gauge transformation: Dμ[A ] →
U (x)Dμ[A ]U−1(x). This is also the case for the field strength 
Fμν(x). Moreover, the constraint (4) is invariant under the gauge 

1 After imposing the constraint (4), the subsequent argument should hold irre-
spective of the form of the potential V . The vacuum manifold in the target space 
of the scalar field is determined by the minima of the potential V , which also sat-
isfies the constraint (4). However, there are some options as to when and how the 
constraint is incorporated, see e.g., (39). The potential is omitted in what follows 
when any confusion does not occur. Moreover, this model is perturbatively non-
renormalizable and the non-perturbative treatment is required.

transformation and does not break the gauge invariance of the the-
ory. Therefore, LYMH of (3) with the constraint (4) is invariant 
under the local gauge transformation (2).

For N = 2, this theory is nothing but the well-known Georgi–
Glashow model which exemplifies the SSB of the local gauge sym-
metry from SU (2) down to U (1) except for the magnitude of the 
scalar field being fixed (4). In this paper, we focus our discussions 
on the SU (2) case.

First, we recall the conventional description for the Higgs 
mechanism. If the scalar field φ(x) acquires a non-vanishing VEV 
〈φ(x)〉 = 〈φ〉, then the covariant derivative reduces to

Dμ[A ]φ(x) := ∂μφ(x) − ig[Aμ(x),φ(x)]
→ −ig[Aμ(x), 〈φ〉] + . . . , (5)

and the Lagrangian density reads

LYMH → −1

2
tr
G
{Fμν(x)Fμν(x)}

− g2 tr
G
{[A μ(x), 〈φ〉][Aμ(x), 〈φ〉]} + . . . .

= −1

2
tr
G
{Fμν(x)Fμν(x)}

− g2 tr
G
{[T A, 〈φ〉][T B , 〈φ〉]}A μA(x)A B

μ (x) + . . . . (6)

To break spontaneously the local continuous gauge symmetry G
by realizing the non-vanishing VEV 〈φ〉 of the scalar field φ , we 
choose the unitary gauge in which the scalar field φ(x) is pointed 
to a specific direction φ(x) → φ∞ uniformly over the spacetime.

This procedure does not completely break the original gauge 
symmetry G . Indeed, there may exist a subgroup H of G such 
that φ∞ does not change under the local H gauge transforma-
tion. This is the partial SSB G → H : the mass is provided for the 
coset G/H (broken parts), while the mass is not supplied for the 
H-commutative part of Aμ:

LYMH → −1

2
tr
G
{Fμν(x)Fμν(x)}

− (gv)2 tr
G/H

{A μ(x)Aμ(x)}. (7)

After the partial SSB, therefore, the resulting theory is a gauge the-
ory with the residual gauge group H .

For G = SU (2), by taking the usual unitary gauge in which the 
scalar field φ(x) = φA(x)T A (A = 1, 2, 3) is chosen so that

〈φ∞〉 = vT3, or 〈φA∞〉 = vδA3, (8)

the second term of (6) generates the mass term,

−g2 v2 tr
G
{[T A, T3][T B , T3]}A μA(x)A B

μ (x)

= 1

2
g2 v2(A μ1(x)A 1

μ(x) + A μ2(x)A 2
μ(x)). (9)

For SU (2), indeed, the off-diagonal gluons A a
μ (a = 1, 2) acquire 

the same mass MW := gv , while the diagonal gluon A 3
μ remains 

massless. Even after taking the unitary gauge (8), U (1) gauge sym-
metry described by A 3

μ still remains as the residual local gauge 
symmetry H = U (1), which leaves φ∞ invariant (the local rotation 
around the axis of the scalar field φ∞).

Thus, the SSB is sufficient for the Higgs mechanism to take 
place. But, it is not clear whether the SSB is necessary or not for 
the Higgs mechanism to work.

In the complete SSB G → H = {1}, all components of the Yang–
Mills field become massive with no massless components:
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