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We propose a lower bound of the dc electrical conductivity in strongly disordered, strongly interacting 
quantum field theories using holography. We study linear response of black holes with broken 
translational symmetry in Einstein–Maxwell-dilaton theories of gravity. Using the generalized Stokes 
equations at the horizon, we derive the lower bound of the electrical conductivity for the dual two 
dimensional disordered field theory.

© 2016 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Based on experimental results, studying some quantum sys-
tems in condensed matter theory such as strange metals and cold 
atomic phase one needs to consider strongly interacting many-
body quantum physics [1]. Quantum critical physics has important 
role in describing macroscopic observables in these systems [2]. 
One of the important observables is the electrical conductivity 
at finite density and disorder. To study such strongly interacting 
systems, the usual theoretical methods are not efficient and one 
should use new methods which are based on the nonperturbative 
approaches.

Using the gauge-string correspondence is a new tool for study-
ing the transport coefficients in strongly interacting systems. In 
this way, the quantum dynamics is encoded in the classical gravity 
in an asymptotically AdS spacetime. To consider finite tempera-
ture systems, one should add a black hole in the bulk space. Such 
systems in the condensed matter physics have large N matrix de-
grees of freedom. In this paper we are interested in studying the 
electrical DC conductivity at finite density and disorder. It is well 
known that a charged fluid with Galilean-invariant symmetry has 
infinite electrical conductivity. It is consequence of momentum 
conservation in the theory. Hence, all currents will have a non-
zero conserved momentum and so they will not decay. However, 
recent studies from numerical holography in systems with break-
ing translation symmetry exhibit finite conductivity [3–6]. Recent 
studies of the DC conductivity have been done for a charged fluid 

E-mail address: bitaghsir@shahroodut.ac.ir.

on the black hole horizon [7–10]. One should notice that it is re-
lated to the near horizon geometry of black holes.

To study strongly interacting quantum disorder systems from 
holography, massive gravity has been studied in [11,12]. In such 
systems momentum relaxation is achieved even though transla-
tions are not explicitly broken in the bulk of the geometry. One 
important prediction of these models is that the disorder alone 
does not derive a metal–insulator transition. In mean-field disor-
der systems, insulators are not disorder-driven. The formation of 
a gap which should be proportional to the amount of disorder 
or additional localized features was studied in [13]. In such stud-
ies the effects of disorder on a holographic superconductor have
been investigated by introducing a random chemical potential on 
the boundary [14,15]. It was shown that increasing disorder leads 
to increasing the superconducting order and subsequently to the 
transition to a metal.

Recently, absence of disorder-driven metal–insulator transitions 
has been studied from holography [16]. It was found that the 
electric DC conductivity of simple holographic disorder systems is 
bounded by the following universal value

σ ≥ 1. (1)

This quantity σ is measured in units of e2

h̄ , with e the U (1) charge 
of the carriers.1 This bound means that one can not get an in-
sulating phase by disorder-driven. They consider Einstein–Maxwell 
theory on AdS4 without any free parameter and show that the 

1 We consider e2

h̄ = 1.
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bound does not depend on the temperature or fluctuations in the 
charge density. The simple holographic model in [16] means that 
there is no coupling between scalar dilaton φ to the Maxwell field 
also no additional charged fields in the bulk of the theory.

In this paper we extend the results of [16] and obtain the 
bound for DC conductivity of disordered Einstein–Maxwell-dilaton 
(EMD) holographic systems. We bound σ in a relativistic theory 
which is dual to a disorder black hole in EMD geometry and in 
two spatial dimension. In such holographic models the field the-
ory is deformed by a charge-neutral relevant scalar operator. In 
general EMD holographic models, the DC conductivity σ can be ei-
ther metallic or insulating [18–20]. Such models are interesting to 
study the strange metal phase of high temperature superconduc-
tors.

We have studied before two important properties of the strange 
metals, the Ohmic resistivity and the inverse Hall angle, in the 
presence of finite-coupling corrections in [21]. In this study, we 
considered the AdS spacetime in the light-cone frame. This frame 
could be used to study physical properties of strange metals [22]. 
The electrical DC conductivity of massive N = 2 hypermultiplet 
fields at finite temperature and in an N = 4 SU (Nc) super-Yang–
Mills theory in the large Nc and finite-coupling correction was 
studied in [23].

This paper is organized as follows. In the next section we re-
view the EMD gravity in [10] and study the charged horizon fluid. 
We also define heat and electric currents in the horizon. In section 
two we use variational method and derive the bound on the con-
ductivity. In the last section we discuss and summarize our results.

2. Dirty black holes

The EMD holographic theories in D spacetime dimensions have 
been studied recently in [10]. In the following the case of AdS4 has 
been considered, also some notations of [10] have been changed. 
In the following we discuss the general class of holographic lat-
tices. Periodic lattices with chemical potential and real scalar field 
have been studied in [3,24]. Also Q-lattice models with more scalar 
fields were studied in [25–27]. The helical lattices were studied 
in [8,9,17]. Study of holographic lattice models in the presence of 
magnetic fields has been done in [28–30]. The generalization of the 
results of this section in the presence of magnetic fields has been 
done in [30].

The action is given by

S =
∫

d4x
√−g

(
R − V (φ) − Z(φ)

4
F 2 − 1

2
(∂φ)2

)
. (2)

Here, F is the Maxwell field strength of A which is dual of a global 
U (1) gauge field. There is also an operator dual to the scalar dila-
ton field φ. One should assume V (φ = 0) = −6,V ′(φ = 0) = 0 and 
Z(φ = 0) = 1 to find a unit radius AdS4 geometry. We have set the 
AdS4 radius to unity, as well as setting 16πG = 1. The equations 
of motion are given by

Rμν − V (φ)

2
gμν − 1

2
∂μφ∂νφ

− 1

2
Z(φ)

(
Fμρ Fν

ρ − 1

4
gμν F 2

)
= 0 ,

∇μ

[
Z(φ)F μν

] = 0 ,

∇2φ − V ′(φ) − 1

4
Z ′(φ)F 2 = 0 . (3)

We consider a general static electrically charged black hole geom-
etry as

ds2 = −U (r)V (r,x)dt2 + W (r,x)

U (r)
dr2 + Gijdxidx j , (4)

with a gauge-field A given by

A = at(r,x)dt = �(r,x)dt . (5)

Here Gij is a metric on a two dimensional manifold at fixed r. The 
holographic direction is denoted by r and the boundary field the-
ory directions are (t, �x). A connected black horizon is located at 
r = 0. The dual field theory temperature T is given by the Hawk-
ing temperature of black hole. In the UV boundary condition, as 
r → ∞, the solutions are taken to approach AdS4 spacetime. The 
gauge field also goes to the spatially dependent chemical poten-
tial μ(x) in the boundary. To consider periodic lattices, one as-
sumes periodic conditions for fields in the boundary. The period 
in spatial directions is denoted by Li and the geometry at fixed 
r parameterizes a torus with period xi ∼ xi + Li also the black 
hole horizon has the same topology. With using Kruskal coordi-
nate v = t + ln r

4π T + . . . , one finds the near horizon expansions of 
the metric functions and fields as

U (r) = 4π T r + U (1) r2 + . . . ,

at(r, x) = a(0)
t W (0) (x) r + a(1)

t (x) r2 + . . . ,

W (r, x) = W (0) (x) + W (1) (x) r + . . . ,

V (r, x) = W (0) (x) + V (1) (x) r + . . . ,

Gij = G(0)
i j + G(1)

i j r + . . . ,

φ(x) = φ(0)(x) + rφ(1)(x) + . . . . (6)

One should notice that W (0)(x) = V (0)(x).
The electric charge density at the horizon is ρh =√−g Z(φ)F tr |h = √−g0a(0)

t Z (0) where Z (0) ≡ Z(φ(0)(x)) and a(0) ≡
a(φ(0)(x)). The scalar dilaton value at the horizon is denoted 
as φ(0) . Henceforth, we use such notation for values of parame-
ters near the horizon.

By turning on electric current E and temperature gradient ζ
on the geometry at fixed r, the black hole will response [26]. One 
should assume Ei = Ei(x), ζi = ζi(x) and use the appropriate linear 
perturbations δgμν ,δaμ , δφ which are functions of (r, xi) [10]. At 
the black hole horizon, the leading order terms are

δgtt → U (r) δg(0)
tt (x) , δgrr → δg(0)

rr (x)

U
,

δgij → δg(0)
i j (x) , δgtr → δg(0)

tr (x) ,

δgti → δg(0)
ti (x) − V (r,x)U (r)ζi

ln r

4π T
, δgri → 1

U

(
δg(0)

ri (x)
)

,

δat → δa(0)
t (x) , δar → 1

U

(
δa(0)

r (x)
)

,

δai → ln r

4π T
(−Ei + at(r,x)ζi) , (7)

with the following constraints on the leading order terms of x as

δg(0)
tt + δg(0)

rr − 2 δg(0)
rt = 0, δg(0)

ri = δg(0)
ti , δa(0)

r = δa(0)
t .

(8)

2.1. The electric and heat current

The bulk electric current density is defined as

J i = √−g Z(φ)F ir . (9)

At linearized order for the perturbed black holes, one finds
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