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a b s t r a c t

We present a formulation of the radiative transfer theory based on
the quantum phase space formalism. The formalism employs the
Wigner function relative to the electric field in (r, t, k, ω) space. It
is shown that this quantity obeys a transport equation with source
and loss terms nonlocal in space and time. This delocalization is
a feature of the Heisenberg uncertainty relation, both relative to
position and momentum and to time and energy. A discussion of
the theory, together with links to the standard radiative transfer
formalism, is done.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The radiative transfer theory serves as a framework for the description of opacity effects in plasma
spectroscopy; applications include astrophysics [1], inertial and magnetic fusion [2–8], engineering
(lamps, lasers) [9,10], and also biomedical optics [11]. It involves a transport equation for the radiation
specific intensity, which is established phenomenologically from energy balance considerations.
We reconsider this theory from a first principles approach based on quantum electrodynamics.
Recently [12–14], a transportmodel for light has been derived in the framework of the quantumphase
space formalism introduced by Wigner [15]. This approach employs the photon Wigner function as
a basic quantity of interest and it yields a transport equation with source and loss terms nonlocal
in the phase space, which captures features of the Heisenberg uncertainty relation. An analysis of
this equation and numerical applications have indicated the possibility of an alteration of the photon
emission and absorption processes if the radiation is partially coherent, viz., in the case of narrow-
band radiation like in atomic transitions. We present here an extension of the formalism devoted to
clarify the links between the quantum phase space description of radiation and quantities accessible
to experiments. Our study is based on the modeling of the electric field autocorrelation function,
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a quantity which is involved in photodetection signals [16–18]. In strict sense, this function is not
directly accessible to the formalismemployed in [12–14] because the latter relies on aWigner function
in six-dimensional (position–momentum) phase space, with no explicit mention to the temporal
correlation properties of the electric field.We showhere that a photodetection signal can be described
in terms of a generalization of the Wigner function to space and time coordinates. A transport
equation for this quantity is derived in the case of atomic line radiation. The derivation involves the
quantized form of the Maxwell wave equation in a dielectric medium. The absorption, stimulated
and spontaneous emission processes are accounted for through a closure relation for the polarization
density, obtained using a linear response model. The paper is organized as follows: Section 2 gives
a summary of formulas obtained within the phenomenological radiative transfer formalism, along
the lines of textbooks on spectroscopy; the space–time Wigner function is introduced in Section 3;
a transport equation for this quantity is derived and discussed in Section 4; finally, the problem of
radiation absorption in an optically thick medium is addressed in Section 5, in the framework of
plasma spectroscopy applications.

2. Radiative transfer formalism: a summary of formulas

The radiative transfer formalism presented in textbooks (e.g. [1]) is usually introduced in a
phenomenological way. The specific intensity I(r, t,n, ν), which serves as a fundamental quantity of
interest, is defined with geometric and energetic arguments. Consider a radiation pencil with spectral
band [ν, ν+dν]propagating along the directionn (n is a unitary vector) and crossing a surface element
dS located at r; by definition, the specific intensity is such that the energy transported by radiation
between times t and t + dt is δE = I(r, t,n, ν) cos θdνdΩdSdt , where the element dΩ denotes
the angular aperture and θ is the angle between the radiation pencil and the normal to the surface.
It is customary to associate a wave packet (referred to as ‘photon’) particle distribution function
with the specific intensity through the proportionality relation I(r, t,n, ν) = (h4ν3/c2)f (r, p, t),
with the correspondence p = hνn/c. In a dispersive medium, the substitution c → c/n is done
where n is the refractive index, e.g. [19]. The distribution function is normalized in such a way that∫
d3r

∫
d3pf (r, p, t) is identical to the total number of photons present in themedium; themomentum

volume element d3p is defined as |p|
2d|p|dΩ , which provides a link to the element dνdΩ involved

in the specific intensity definition. A transport equation for the specific intensity (radiative transfer
equation) is obtained from energetic balance considerations. When applied to the radiation due to
dipoles, this equation reads(

1
c
∂

∂t
+ n · ∇

)
I = η − κ I, (1)

and, again, substitutions involving the refractive index n are done if the medium is dispersive [19].
The source and loss terms (emission and extinction coefficients) involve atomic parameters:

η(r, t,n, ν) =
hνul
4π

Nu(r, t)Aulψ(r, t,n, ν), (2)

κ(r, t,n, ν) =
hνul
4π

[Nl(r, t)Bluφ(r, t,n, ν) − Nu(r, t)Bulψ(r, t,n, ν)]. (3)

The A and B coefficients are the Einstein coefficients for spontaneous emission, absorption and stimu-
lated emission; Nu and Nl stand for the densities of atoms in upper and lower levels of the transition;
νul is the Bohr frequency of the transition u → l under consideration; ψ and φ are frequency-
normalized emission and absorption line shape functions, viz.

∫
(dΩ/4π )

∫
dνψ(r, t,n, ν) =∫

(dΩ/4π )
∫
dνφ(r, t,n, ν) = 1. The line shapes are proportional to the Fourier transform of the

atomic dipole autocorrelation function; they characterize the energy level perturbation during
an emission or an absorption process. The emission and absorption profiles are identical if the
emission and absorption processes are statistically independent (complete redistribution). In a more
general case, they are related through an integral relation that involves a two-photon line shape
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