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h i g h l i g h t s

• We introduce a new stochastic process, the periodic Airy-2 process.
• It describes the imaginary-time dynamics of trapped fermions at finite temperature.
• New results for the real time dynamics of trapped fermions at finite temperature.
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a b s t r a c t

We establish an exact mapping between (i) the equilibrium (imag-
inary time) dynamics of non-interacting fermions trapped in a har-
monic potential at temperature T = 1/β and (ii) non-intersecting
Ornstein–Uhlenbeck (OU) particles constrained to return to their
initial positions after time β . Exploiting the determinantal struc-
ture of the process we compute the universal correlation functions
both in the bulk and at the edge of the trapped Fermi gas. The
latter corresponds to the top path of the non-intersecting OU
particles, and leads us to introduce and study the time-periodic
Airy2 process, Ab

2(u), depending on a single parameter, the period
b. The standard Airy2 process is recovered for b = +∞. We discuss
applications of our results to the real time quantum dynamics of
trapped fermions.
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1. Introduction

The Airy2 process was introduced in Ref. [1] in the context of the discrete space, continuous time
polynuclear growth model. Since then this process has appeared in many different contexts, such
as directed last passage percolation [2], Dyson’s Brownian motion [3], non-intersecting Brownian
bridges and excursions (watermelons) [4,5], growthmodels [6], random tilings [7], interacting particle
transport [8] and in the continuum KPZ equation [9] (for a review see [10,11]). To understand this
process one can consider the following simple example. Consider a single Ornstein–Uhlenbeck (OU)
process [12] where the position of a particle x(τ ) in a one-dimensional harmonic potential evolves by
the Langevin equation:

dx(τ )
dτ

= −µ0 x(τ ) + η(τ ), (1)

where η(τ ) is a centered Gaussianwhite noise, with correlator η(τ )η(τ ′) = δ(τ−τ ′).We now consider
anOUbridge, i.e., condition theOUprocess to start at x = 0 at τ → −∞ and end at x = 0 at τ → +∞.
Suppose that we want to compute the probability density function (PDF) of the position of the walker
at any fixed finite τ . This probability can be computed by splitting the path into a left and a right part,
calculating the probability of each part and then taking the product. For the left part the walker starts
at x = 0 at time −∞ hence at time τ its probability to be at x becomes independent of τ and is given
by

Pleft(x, τ ) ∝ e−
µ0
2 x2 . (2)

For the right part, we can consider the time-reversed path, which is just an independent but
(statistically) identical copy of the left path. Hence the probability to reach x at time τ from the right
is given by

Pright(x, τ ) ∝ e−
µ0
2 x2 . (3)

Taking the product and normalizing to unity, we get the PDF of the position of this OU bridge as [13]

Pstat(x) =

√
µ0

π
e−µ0 x2 , (4)

where the subscript ‘‘stat’’ indicates that this PDF is stationary, i.e., independent of time τ . In fact, this
OU bridge process can also be identified to a time-periodic OU process (to be elaborated later in the
paper) with period infinity.

We now consider an N-body generalization of this process, i.e., N OU bridges, conditioned not to
cross each other, x1(τ ) > x2(τ ) > · · · > xN (τ ), at any time τ . As in theN = 1 case,we assume that they
started close to the origin (respecting the above ordering) at time τ → −∞ and are conditioned to
return to the same initial positions at time τ → +∞. Againwe canmake the left–right decomposition
of the paths at any intermediate time τ . For the left part, the probability density that the N walkers
reach x1, x2, . . . , xN at time τ again becomes independent of τ and is given by (see for instance [14])

Pleft(x1, . . . , xN , τ ) ∝ e−
µ0
2
∑N

j=1 x2j
∏

1≤j<i≤N

(xi − xj). (5)

Incidentally this is also the joint PDF (JPDF) of the N eigenvalues of an N ×N real, symmetric Gaussian
randommatrix [known as the Gaussian Orthogonal Ensemble (GOE) [15]]. Similarly, for the right part,
considering the time reversed trajectories, we get

Pright(x1, . . . , xN , τ ) ∝ e−
µ0
2
∑N

j=1 x2j
∏

1≤j<i≤N

(xi − xj). (6)

Hence, taking the product, we obtain the JPDF of these non-intersecting OU bridges as

Pstat(x1, . . . , xN ) = ANe
−µ0

∑N
j=1 x2j

N∏
j=1

(xi − xj)2 (7)
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