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a b s t r a c t

In recent years enormous progress has been made in perturbative
quantum field theory by applying methods of algebraic geometry
to parametric Feynman integrals for scalar theories. The transition
to gauge theories is complicated not only by the fact that their para-
metric integrand is much larger andmore involved. It is, moreover,
only implicitly given as the result of certain differential operators
applied to the scalar integrand exp(−ΦΓ /ΨΓ ), where ΨΓ and ΦΓ

are the Kirchhoff and Symanzik polynomials of the Feynman graph
Γ . In the case of quantum electrodynamics we find that the full
parametric integrand inherits a rich combinatorial structure from
ΨΓ and ΦΓ . In the end, it can be expressed explicitly as a sum
over products of new types of graph polynomials which have a
combinatoric interpretation via simple cycle subgraphs of Γ .

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The parametric version of Feynman integrals has long been an extremely useful tool in the study
of perturbative quantum field theory [1–5]. Moreover, over the last decade a number of fascinating
breakthroughs have unveiled deep connections to algebraic geometry and number theory, and have
motivated mathematicians to study Feynman integrals, their periods, as well as connections to
combinatorics and geometry [6–12]. However, most of this takes place in the realm of scalar quantum
field theories due to the complications that the tensor structure of gauge theories brings to Feynman
integrals. Not only does the parametric integrand in quantum electrodynamics (the simplest gauge
theory) contain a number of (traces of) Dirac matrices, which we will discuss separately in future
work. It also contains a complicated rational function in the Schwinger parameters, momenta, metric
tensors etc. in front of the usual integrand of a scalar Feynman integral. While the rough structure of
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this function has been known for a long time1 to be a certain sum over products of polynomials
that are somehow related to derivatives of the second Symanzik polynomial, there has been no
direct combinatorial interpretation of what these polynomials are. In this article we give such an
interpretation of the form

∑
C ±ΨΓ //C , where the sum is over certain cycle subgraphs of the Feynman

graph Γ and ΨΓ //C is its Kirchhoff polynomial after contraction of that cycle.
Moreover, we believe that combining the results of this article with a systematic combinatorial

treatment of Diracmatrices in futureworkwill allowus to give a version of a parametric QED Feynman
integrand that is essentially a single scalar integrand and includes a number of intricate cancellations
that reduce the size of the integrand at higher loop orders by several orders of magnitude compared
to the naive version Eq. (62). A thus simplified Feynman integral will be much easier to handle, for
example when trying to extend Brown’s and Kreimer’s parametric renormalisation procedure [13]
(recently applied to great effect in [14]) to QED, and allow for a better understanding of non-scalar
Feynman amplitudes. In particular, we see this as a first step in answering a number of long standing
questions in QED, for example the cancellation of transcendental terms in the beta function [15–17].
Finally, since most of the combinatorics underlying our result is independent of the specific case of
QED, it should be possible to generalise the insights gained in this article to the non-abelian case by
studying the corolla differential of [18].

We begin by recapitulating some basic graph theory and the definitions of the Kirchhoff and
Symanzik polynomials in Sections 2.1 and 2.2. For more detail we suggest the reader consult the
excellent review article [19] or the classic book [20]. Building on that we define our new cycle
polynomials and discuss a number of examples and properties in Section 2.3. In particular we would
like to highlight the three identities proved in the lemmata 2.9–2.11, since they are the fundamental
building blocks for the proof of our main result and also quite fascinating in their own right. After
briefly introducing parametric Feynman integrals for non-experts and discussing the peculiarities of
quantum electrodynamics in Section 3 we are ready to state and prove Theorem 4.1.

2. Graphs and graph polynomials

2.1. Graphs, subgraphs and Feynman graphs

A graph G is an ordered pair (VG, EG) of the set of vertices VG = {v1, . . . , v|VG|} and the set of edges
EG = {e1, . . . , e|EG|}, together with a map ∂ : EG → VG × VG, which is usually realised by drawing
the graph in the plane. Wewill need our graphs to be directed, however as usual the particular choice
of direction for each edge is arbitrary and will have no influence on the results of this article. For a
directed edge e ∈ EG we write ∂−(e) ∈ VG for its start vertex and ∂+(e) ∈ VG for its target vertex, such
that

∂ : e ↦→ (∂−(e), ∂+(e)) (1)

Unless explicitly stated otherwise we assume G to be connected, but its subgraphs may have multiple
components. If a subgraph g ⊂ G does not contain isolated vertices (which is the case for all the types
of subgraphs we discuss below) it is uniquely defined by its edge set via ∂(Eg ) andwe use the notation
for the edge subset and the actual subgraph interchangeably.

2.1.1. Types of subgraphs
There are a multitude of significant types of graphs. For our purposes we concentrate on three of

them, spanning trees, bonds and cycles.
A spanning tree T ⊂ G is a tree (i.e. a connected and simply connected graph) that contains all

vertices of G. In other words,

h0(T ) = 1 h1(T ) = 0 VT = VG

where hi denotes the i-th Betti number of a graph. We denote the set of all spanning trees of G by TG.

1 It follows very directly from the Leibniz rule of differentiation. See also [3].
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