
Annals of Physics 384 (2017) 61–70

Contents lists available at ScienceDirect

Annals of Physics

journal homepage: www.elsevier.com/locate/aop

Magneto-optical conductivity of anisotropic
two-dimensional Dirac–Weyl materials
M. Oliva-Leyva, Chumin Wang *
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal
70-360, 04510 Mexico City, Mexico

h i g h l i g h t s

• The magneto-optical response of anisotropic massless Dirac fermions is investigated.
• The conductivity tensor is obtained from the Kubo formula.
• We study effects of strain and magnetic field on the light absorption of graphene.
• The Faraday rotation in strained graphene is analytically determined.

a r t i c l e i n f o

Article history:
Received 25 May 2017
Accepted 20 June 2017
Available online 8 July 2017

Keywords:
Anisotropic Dirac fermions
Strained graphene
Landau levels
Magneto-optical conductivity
Faraday effect

a b s t r a c t

In the presence of an external magnetic field, the optical response
of two-dimensional materials, whose charge carriers behave as
massless Dirac fermions with arbitrary anisotropic Fermi velocity,
is investigated. Using Kubo formalism, we obtain the magneto-
optical conductivity tensor for these materials, which allows to ad-
dress the magneto-optical response of anisotropic Dirac fermions
from the well known magneto-optical conductivity of isotropic
Dirac fermions. As an application, we analyse the combined effects
of strain-induced anisotropy and magnetic field on the transmit-
tance, as well as on the Faraday rotation, of linearly polarized light
after passing strained graphene. The reported analytical expres-
sions can be a useful tool to predict the absorption and the Faraday
angle of strained graphene under magnetic field. Finally, our study
is extended to anisotropic two-dimensional materials with Dirac
fermions of arbitrary pseudospin.

© 2017 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses:moliva@iim.unam.mx (M. Oliva-Leyva), chumin@unam.mx (C. Wang).

http://dx.doi.org/10.1016/j.aop.2017.06.013
0003-4916/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.aop.2017.06.013
http://www.elsevier.com/locate/aop
http://www.elsevier.com/locate/aop
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aop.2017.06.013&domain=pdf
mailto:moliva@iim.unam.mx
mailto:chumin@unam.mx
http://dx.doi.org/10.1016/j.aop.2017.06.013


62 M. Oliva-Leyva, C. Wang / Annals of Physics 384 (2017) 61–70

1. Introduction

A Dirac–Weyl material, such as graphene [1,2], organic conductors [3,4] and topological insula-
tors [5,6], possesses low-energy fermionic excitations that behave as massless Dirac particles, rather
than conventional fermions governed by the Schrödinger’s equation [7]. The behaviour of these Dirac
fermions in graphene has been studied by applying an external magnetic field, where a half-integer
quantum Hall effect was observed [1,2]. This observation demonstrates the existence of relativistic
Landau levels with a square root dependence on both the magnetic field B and Landau level index n
(as ∼

√
B|n|), which is in stark contrast to the equally spaced Landau levels for a conventional two-

dimensional electron gas. This unconventional Landau spectrum has also been proved by means of
infrared spectroscopymeasurements, whose transmittance through graphene undermagnetic field is
in excellent agreement with the theoretical magneto-optical response of Dirac fermions derived from
the Kubo formula [8,9]. Moreover, graphene exhibits quantum Faraday and Kerr rotations associated
with the half-integer quantum Hall effect [10,11].

Even in absence of magnetic field the optical properties of graphene are per se unusual. For
example, graphene presents an universal transmittance T determined by the fine-structure constant
α (being T ≈ 1 − πα ≈ 97.7%), over a broad range of frequencies [12]. This remarkable feature
is a consequence of its charge carriers behaved as massless Dirac fermions. At the same time,
graphene exhibits a large interval of elastic response and then, mechanical deformations have been
proposed as a tool to tune its optical properties [13–16]. By applying a uniaxial strain, the optical
conductivity of graphene becomes anisotropic [17,18] and its transmittance depends on the incident
light polarization [14,19].

Up to now, the combined effects of both magnetic field and strain on the optical properties of a
two-dimensional Dirac–Weyl material (2D DWM) have not been analysed in detail. In fact, the optical
conductivity of unstrained graphene under magnetic field is given by an antisymmetric tensor [20],
whereas the optical response of strained graphene, in absence of magnetic field, is a symmetric
tensor [21]. In consequence: What is the symmetry of the optical conductivity tensor if both effects are
present? How many independent components does this tensor have?

The main objective of this article is to provide a general formulation of the magneto-optical
conductivity for anisotropic (strained) 2D DWMs. For this purpose, in Section 2 we start by deriving
the Landau level spectrum for the mentioned 2D DWMs. Unlike previous approaches [22,23], our
derivations are carried out in an arbitrary laboratory reference system. In Section 3, we give an
analytical expression for themagneto-optical conductivity tensor of an anisotropic 2DDWM,whilewe
answer the above questions in Section 4. As an example, we apply our analytical results to a strained
graphene and we report a generalized Faraday rotation. Section 6 is devoted to discuss the extension
of this analysis to Dirac fermions with arbitrary pseudospin and, finally, some conclusions are given
in Section 7.

2. Landau levels

We consider the dynamics of low-energy carriers in an anisotropic 2D DWM governed by the
generic Dirac–Weyl Hamiltonian [24–28]

H = τ · v · p =

∑
i,j

τivijpj, (1)

where τ = (τx, τy) are the first two Pauli matrices that act on the pseudospin degree of freedom, p is
the momentum measured from the Dirac point and v is the (2 × 2) symmetric Fermi velocity tensor.
The corresponding energy dispersion relation is

E(p) = ±

√∑
i

(∑
j

vijpj
)2
, (2)

which represents elliptic Dirac cones. Unlike an isotropic 2DDWM,whose Hamiltonian isH0
= v0τ ·p

with energy dispersion E0(p) = ±v0|p|, the constant energy contours of Eq. (2) are not circles but
ellipses, as illustrated in Fig. 1.



Download English Version:

https://daneshyari.com/en/article/5495854

Download Persian Version:

https://daneshyari.com/article/5495854

Daneshyari.com

https://daneshyari.com/en/article/5495854
https://daneshyari.com/article/5495854
https://daneshyari.com

