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a b s t r a c t

A quantum system with variables in Z(d) is considered. Coher-
ent density matrices and coherent projectors of rank n are intro-
duced, and their properties (e.g., the resolution of the identity) are
discussed. Cooperative game theory and in particular the Shapley
methodology, is used to renormalize coherent states, into a partic-
ular type of coherent density matrices (dressed coherent states).
The Q -function of a Hermitian operator, is then renormalized into
a physical analogue of the Shapley values. Both the Q -function and
the Shapley values, are used to study the relocation of a Hamilto-
nian in phase space as the coupling constant varies, and its effect
on the ground state of the system. The formalism is also general-
ized for any total set of states, for which we have no resolution of
the identity. The dressing formalism leads to density matrices that
resolve the identity, and makes them practically useful.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Coherent states have been studied extensively in the literature [1–3]. They are an overcomplete
set of states, and there are subsets of the full set of coherent states which are total sets (i.e., there
is no state which is orthogonal to all states in the subset). We consider quantum systems with
d-dimensional Hilbert space [4–6], in which case the number of coherent states is d2 [7,8]. We show
that ideas from cooperative game theory can provide a deeper insight to the overcompleteness of
coherent states, and their linear dependence (lack of linear independence) which is related to it.
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Cooperative game theory [9–12] adds ‘corrections’ to the individual contribution of a player, which
reflect his contribution to coalitions (aggregations) of players. This gives the Shapley value, which
shows the share of a player in the ‘total worth’ of the game, andwhich renormalizes (dresses) his lone
contribution, by adding his contribution to all possible coalitions. The sum of all the Shapley values,
is the total worth of the game.

In analogy to this, we add to the one-dimensional projector corresponding to a coherent state,
other terms that reflect its role within spaces spanned by aggregations of coherent states. This gives a
renormalized (dressed) coherent state, which is a mixed state described by a coherent density matrix.
The sum of all coherent density matrices is the identity (resolution of the identity).

Coherent states are used to define the Q -function of a Hermitian operator θ . The dressed coherent
states define a generalized Q -function, a physical analogue of the Shapley values. As an application
of these ideas, we study the relocation of a Hamiltonian in phase space as a function of the coupling
constant, and how this affects the ground state of the system. Such calculations on large quantum
systems, can be used in the study of phase transitions. Location indices ofHermitian operators in phase
space, and comonotonicity (or cohabitation) intervals of the coupling constant, are used to quantify
this relocation. These calculations are performed with respect to either Q -function or Shapley values,
and their relative merits are discussed.

Most of the paper uses the formalismwith coherent states. Butwe also consider a total set of states,
which are not coherent states and forwhichwehave no resolution of the identity. The renormalization
formalism in this case, leads to density matrices that resolve the identity and can be used in practical
applications.

In order to develop this formalism, we introduce in Section 2.2 coherent density matrices. They
are generalizations of coherent states (which are pure states) to mixed states. We then introduce in
Section 2.3 coherent projectors of rank n, to spaces spanned by aggregations of n coherent states.
The terms coherent density matrices and coherent projectors, reflect the fact that they resolve the
identity, and that there is a closure property where under displacements they are transformed into
other coherent density matrices and coherent projectors, correspondingly.

In Section 3 we present briefly some concepts from cooperative game theory, which are needed
later. The presentation uses the standard language of cooperative game theory, but it also introduces
some ‘quantum terminology’, because our aim is to transfer these ideas in a quantum context. In
Section 4 we explain in a precise manner, the analogies between cooperative game theory, and
aggregations of coherent states. Möbius transformations are used to identify overlaps and avoid
double-counting: in cooperative game theory, they quantify the added value in a coalition; and in
a quantum context they describe the double counting due to the overcompleteness of the coherent
states.

In Section 5 we transfer the concept of Shapley values into a quantum context. We show that
they are generalized Q -functions with respect to a particular set of coherent density matrices, which
can be regarded as renormalized (dressed) versions of the ‘bare’ coherent projectors. The dressing
formalism is related to the non-orthogonality and non-commutativity of the coherent projectors,
as discussed in Section 5.1. The properties of these coherent density matrices are presented in
Propositions 5.2 and 5.5.

In Section 6 the formalism is generalized to any total set of states. As an application we study in
Section 7, the relocation of a Hamiltonian in phase space as the coupling constant varies, and its effect
on the ground state of the system. We conclude is Section 8 with a discussion of our results.

2. Generalized coherence in finite quantum systems

2.1. Coherent projectors

We consider a quantum systemwith variables in Z(d), described by a d-dimensional Hilbert space
H(d). |X; n⟩ is the basis of position states, and |P; n⟩ the basis of momentum states (X and P in the
notation are not variables, they simply indicate position and momentum states). They are related
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