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a b s t r a c t

It is shown that the two-axis countertwisting Hamiltonian is
exactly solvable when the quantum number of the total angular
momentum of the system is an integer after the Jordan–Schwinger
(differential) boson realization of the SU(2) algebra. Algebraic
Bethe ansatz is used to get the exact solution with the help of
the SU(1,1) algebraic structure, from which a set of Bethe ansatz
equations of the problem is derived. It is shown that solutions
of the Bethe ansatz equations can be obtained as zeros of the
Heine–Stieltjes polynomials. The total number of the four sets
of the zeros equals exactly 2J + 1 for a given integer angular
momentum quantum number J , which proves the completeness
of the solutions. It is also shown that double degeneracy in level
energiesmay also occur in the J → ∞ limit for integer J case except
a unique non-degenerate level with zero excitation energy.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Squeezed spin states of both Bose and Fermi many-body systems [1–8], where a component of
the total angular momentum of an ensemble of spins has less uncertainty [9,10] than other cases
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without quantum mechanical correlations, have been attracting great attention [11–14], not only
because they are intrinsically interesting, but also because of being practically useful in precision
measurements [2], quantum information, and fundamental tests of quantum mechanics [15]. As
shown in [1], maximal squeezed spin states of a many-particle system can be generated by using
the two-axis countertwisting mechanism, of which the Hamiltonian of the system is referred to as
the two-axis countertwisting Hamiltonian. When the number of particles is small, the Hamiltonian
can easily be diagonalized for a given quantum number of the total angular momentum of the system.
However, one needs to handle a huge sparse matrix when the system contains an ensemble of a large
number of particles [5–8,14]. Exact analytical solution to the problem should be helpful, especially
when one deals with a large number of particles. As noted in [16], up till now, there has been no
general analytic solution available, though there were a few analytic treatments [17–20] for a system
with small number of particles.

In fact, significant progresses have beenmade in finding exact solutions ofmany-spin systems since
the work of Bethe, Gaudin and Richardson [21–24]. Particularly, the Lipkin–Meshkov–Glick (LMG)
model, which can be expressed in terms of the total angular momentum operators of the system
up to their quadratic form, has been analytically solved by using the algebraic Bethe ansatz [25,26].
The same problem can also be solved by using the Dyson boson realization of the SU(2) algebra
[27–29], of which the solutions may be obtained from the Riccati differential equations [27,28].
Discrete phase analysis of the model with applications to spin squeezing and entanglement was
studied in [30]. In [31], itwas shown that asymmetric rotorHamiltonian can also be solved analytically
by using the algebraic Bethe ansatz. However, though the two-axis countertwisting Hamiltonian is
equivalent to a special case of the LMG model [27,28] after an Euler rotation, the procedures used
in [25,26,31] cannot be applied to the two-axis countertwisting Hamiltonian directly.

In this work, we show that the two-axis countertwisting Hamiltonian is indeed exactly solvable
when the quantum number of the total angular momentum of the system is an integer after the
Jordan–Schwinger (differential) boson realization of the SU(2) algebra. Similar to [31], exact solution
to the problemwill be derived based on the SU(1,1) algebraic structure after suitable transformations.
Moreover, it is shown that solutions of the Bethe ansatz equations can be obtained from zeros of the
Heine–Stieltjes polynomials, which, in turn, verifies the completeness of the solutions.

2. The two-axis countertwisting Hamiltonian

The two-axis countertwisting Hamiltonian may be written as [1]

HTA =
χ

2i
(J2

+
− J2

−
), (1)

where J± are the angular momentum raising and lowering operators, i =
√

−1, and χ is a constant.
The Hamiltonian (1) is invariant under both parity and time reversal transformations, namely, it is PT -
symmetric. Due to time-reversal symmetry, similar to the asymmetric rotor case [31], level energies
of the system are all doubly degenerate when the quantum number of the total angular momentum is
a half-integer. (1) is also equivalent to a special LMG Hamiltonian after rotation of the system by π/4
around z axis, of which the thermodynamic limit was studied in [27,28] by using the Dyson boson
(differential) realization and the corresponding Riccati differential equations.

Using the Jordan–Schwinger realization of SU(2), we have

J+ = aĎb, J− = bĎa, J0 =
1
2
(aĎa − bĎb), (2)

where a, b and aĎ, bĎ are boson annihilation and creation operators introduced. It can be observed
that eigenstates of (1) may be expressed as

|N, ζ ⟩ = F (ζ )
t (aĎ2, bĎ2)|νa, νb⟩ (3)

after the Jordan–Schwinger realization, where F (ζ )
t (aĎ2, bĎ2) is a homogeneous polynomial of degree t

with variables {aĎ2, bĎ2}, |νa, νb⟩ is the boson pairing vacuum satisfying a2|νa, νb⟩ = 0, b2|νa, νb⟩ = 0,
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