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a b s t r a c t

Constrained energy minimizations of a many-body Hamiltonian
return energy landscapes e(b) where b ≡ ⟨B⟩ represents the
average value(s) of one (or several) collective operator(s), B, in
an ‘‘optimized’’ trial state Φb, and e ≡ ⟨H⟩ is the average value
of the Hamiltonian in this state Φb. It is natural to consider the
uncertainty, ∆e, given that Φb usually belongs to a restricted set
of trial states. However, we demonstrate that the uncertainty, ∆b,
must also be considered, acknowledging corrections to theoretical
models. We also find a link between fluctuations of collective
coordinates and convexity properties of energy surfaces.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Collective coordinates [1] have been of central importance in descriptions of structure and
reactions in atomic, molecular, and nuclear physics. They generate models with far less degrees of
freedom than the true number of coordinates, 3A, as needed for a microscopic description of a system
of A particles. Often, the system’s dynamics can be compressed into slow motions of a few collective
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degrees of freedom B, while the other, faster degrees can be averaged out. Also, for identical particles,
such collective degrees can be one-body operators, B =

A
i=1 β(ri, pi, σi, τi), where ri, pi, σi, τi refer

to the position, momentum, spin, and if necessary isospin, respectively, of particle i. The summation
over i provides for more inertia in B than in the individual degrees βi.

The concept of energy surfaces [2] has been as important. Given a ‘‘coordinate-like’’ collective
operator B and its expectation value b ≡ ⟨B⟩, most collective models use an energy function, e(b), and
also a b-dependent inertia parameter, that drive the collective dynamics. Keywords such as ‘‘saddles’’,
‘‘barriers’’, etc., flourish [2].

Simultaneously, it is often assumed that the function, e(b), results from an energy minimization
under constraint. Namely, while the system evolves through various values of b, it is believed to tune
its energy to achieve a (local) minimum. This aspect of finding e(b) is central tomany fields of physics.
To illustrate, consider a Hamiltonian, H =


i Ti +


i<j Vij, where T and V denote the usual kinetic

and interaction operators. Given a trial set of density operators, D , in many-body space, normalized
by TrD = 1, the energy function e(b)may be defined as,

e(b) = inf
D⇒b

Tr {HD} , (1)

where Tr is a trace in the many-body space for the A particles. The constraint, D ⇒ b, enforces
Tr {BD} = b.

There are theories which do not use, a priori, an axiom of energy minimization for the ‘‘fast’’
degrees of freedom. Time-dependent Hartree–Fock (HF) [3] trajectories, generalizations with pairing,
adiabatic versions [4], often show collective motions. Equations of motion [5] and/or a maximum
decoupling [6] of ‘‘longitudinal’’ from ‘‘transverse’’ degrees, have also shown significant successes in
the search for collective degrees, at the cost, however, of imposing a one-body nature of both collective
coordinates and momenta and accepting state-dependence of these operators. Such approaches
define an energy surface once trajectories of wave functions have been calculated. But they are not
the subject of the present analysis. Herein, we focus on fixed operators constraining strict energy
minimizations within a fixed basis for single-particle and many-body states. The questions arise:
are those constraints themselves subject to fluctuations, and what would be the effect of those
fluctuations on the energy minimization?

These are not new questions. The issue of constrained Hartree–Fock calculations was addressed
in Ref. [7], which considered constrained Hartree–Fock calculations, and corrections to the energy
surface. The issue has also been considered more recently in relation to high-energy (e, e′p) and
(p, 2p) reactions [8],where fluctuations in the position vectors of the target nucleons involved in those
processes were considered as going beyond the mean-field approximation assumed for the structure
of the target nucleus.

Ideally, to define mathematically a function e(b) of the collective coordinate, one should first
diagonalize B within the space provided by the many-body states available for calculations [9]. The
resulting spectrumof B should be continuous, or at least have a high density for that chosen trial space.
Then, for each eigenvalue b, one should find the lowest eigenvalue, e(b), of the projection of H into
that eigensubspace labeled by b.

In practice, however, one settles for a diagonalization of the constrained operator, H ≡ H − λB,
where λ is a Lagrange multiplier, or at least for a minimization of ⟨H⟩. Concomitantly, B is assumed
to have both upper and lower bounds, or that the constrained Hamiltonian, H , always has a ground
state. This returns the ‘‘free energy’’, ε(λ) ≡ ⟨H⟩. The label b is no longer an eigenvalue but just an
average value, b = ⟨B⟩. A standard Legendre transform of ε(λ) then yields the ‘‘energy surface’’, e(b).
This utilizes the properties dε/dλ = −Tr{BD} = −b, and, de/db = λ. However we show in this work
that constrained variation in a quantum system without additional precautions can raise at least two
problems, namely: (i) the parameter bmay no longer be considered as a well-defined coordinate for a
collective model due to non-negligible fluctuations; we report cases where the uncertainties,1b, can
vitiate the meanings of both b and e(b); and (ii) there is a link between strict minimization and the
curvature properties of e(b)when fluctuations are at work.

Our argument is based fundamentally on a few theorems, presented in Section 2, but also
illustrated using a few explicit models, which may be solved analytically or numerically. Such
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