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Curado et al. [Ann. Phys. 366 (2016) 22] have recently studied the axiomatic structure and
the universality of a three-parameter trace-form entropy inspired by the group-theoretical struc-
ture. In this work, we study the group-theoretical entropy Sa,b,r in the context of the third law
of thermodynamics where the parameters {a, b, r} are all independent. We show that this three-
parameter entropy expression can simultaneously satisfy the third law of thermodynamics and the
three Khinchin axioms, namely continuity, concavity and expansibility only when the parameter
b is set to zero. In other words, it is thermodynamically valid only as a two-parameter general-
ization Sa,r. Moreover, the restriction set by the third law i.e., the condition b = 0, is important
in the sense that the so obtained two-parameter group-theoretical entropy becomes extensive only
when this condition is met. We also illustrate the interval of validity of the third law using the
one-dimensional Ising model with no external field. Finally, we show that the Sa,r is in the same
universality class as that of the Kaniadakis entropy for 0 < r < 1 while it has a distinct universality
class in the interval −1 < r < 0.
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I. INTRODUCTION

Recently, there has been a great deal of progress in constructing generalized statistical mechanics through the
applications of the information-theoretic entropies. To list some of them, one can cite Tsallis [1], Rényi [2], Kaniadakis
[3] entropies. These generalized entropies aim to explain the non-equilibrium stationary metastable states through the
deformation in the underlying entropic structure. Along this direction, many important applications were reported in
the fields of generalized reaction rates [4–7], quantum information [8–14], plasma physics [15–17], high energy physics
[18–20] and the rigid rotators in modelling the molecular structure [21, 22]. The common feature of these entropies is
to yield inverse power law distributions through the entropy maximization [1, 3, 23, 24].

It is also worth noting the recent progress in the use of the fractional calculus based entropies such as Ubriaco [25]
and Machado [26] entropies. These fractional entropies have been applied to the study of the financial time series and
stock market index [26, 27], used for explaining the relation between DNA and the fractional Brownian motion [28],
image splicing [29], and a new definition of the complexity metrics [30].

A very general novel approach, first initiated in Ref. [31], is to obtain generalized entropy expressions through
the underlying group-theoretical structure [32–34]. The point of departure in this approach is the observation that
the thermodynamically admissible entropies should satisfy a general composability property i.e. their values on a
system composed by the union of two statistically independent subsystems A and B should depend on the entropies of
the two subsystems only modulo some deformation parameters [32–34]. In other words, S (A ∪B) = Φ (S(A), S(B))
where S denotes the entropy functional and Φ(x, y) represents a smooth function of two real variables x and y.
Note that the choice Φ(x, y) = x + y yields the well-known additivity associated with the Boltzmann-Gibbs entropy
for example. The function Φ(x, y) is then to satisfy the group properties, namely, symmetry (Φ(x, y) = Φ(y, x)),
associativity (Φ(x, Φ(y, z)) = Φ(Φ(x, y), z)) and null-composability (Φ(x, 0) = x) [32–34]. The symmetry requirement
ensures the interchangeability of the subsystems, the null-composability implies no change in the thermodynamics
of the composed system when it includes a system with zero entropy [32]. Finally, the associativity generalizes the
notion of composability to more than two systems [32]. The choice of the function Φ(x, y) satisfying these three group
properties determines the group structure underlying the entropy expressions one obtains. For example, the choice
Φ(x, y) = x + y represents the additive group law while Φ(x, y) = x + y + axy (a being a real continuous parameter)
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