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A macroscopic system prepared in a disordered phase and quenched across a second-order 
phase transition into an ordered phase undergoes a coarsening process whereby it orders 
locally in one of the equilibrium states. The study of the evolution of the morphology 
of the ordered structures in two dimensions has recently unveiled two interesting and 
generic features. On the one hand, the dynamics first approach a critical percolating state 
via the growth of a new lengthscale and satisfying scaling properties with respect to it. 
The time needed to reach the critical percolating state diverges with the system size, 
though more weakly than the equilibration time. On the other hand, once the critical 
percolating structures established, the geometrical and statistical properties at larger scales 
than the one established by the usual dynamic growing length remain the ones of critical 
percolation. These observations are common to different microscopic dynamics (single spin 
flip, local and non-local spin exchange, voter) in pure or weakly disordered systems. We 
discuss these results and we refer to the relevant publications for details.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 
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r é s u m é

Si un système macroscopique préparé dans une phase désordonnée est refroidi brusquement 
à une température inférieure à celle où, à l’équilibre, il y a une transition du second ordre, 
il subit alors un processus de coarsening au cours duquel il prend localement l’une des 
structures ordonnées stables à l’équilibre. L’étude de l’évolution de la morphologie des 
structures ordonnées en deux dimensions a récemment révélé deux propriétés génériques 
intéressantes. D’une part, la dynamique approche d’abord un état critique de percolation 
grâce à la croissance d’une nouvelle échelle de longueur, et vérifie des relations d’échelle 
vis-à-vis de celle-ci. Le temps nécessaire pour rejoindre l’état critique de percolation 
diverge avec la taille du système, moins faiblement que le temps nécessaire pour atteindre 
l’équilibre. D’autre part, après avoir atteint l’état critique de percolation, les propriétés 
géométriques et statistiques aux échelles plus longues que la longueur dynamique de 
croissance habituelle demeurent celles de la percolation critique. Ces observations sont 
communes aux différents types microscopiques de dynamique (retournement de spin 
simple, échange de spin local ou non, électeur) dans les systèmes purs ou faiblement 
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désordonnés. On discute ces résultats et on renvoie aux publications originales pour 
davantage de détails.
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article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Understanding the out-of-equilibrium evolution of collective phenomena in complex systems is a hard task. In many 
interesting cases of current interest, such as glassy materials, there is no clear comprehension of the mechanisms whereby 
these systems progress and, concomitantly, which are the microscopic rearrangements that lead to the slow but steady ap-
proach to equilibrium, when this asymptotic state is possible. There are, however, some lucky out of equilibrium relaxing 
systems in which the time-dependent microscopic configurations can be followed with numerical simulations or experi-
mental techniques and simple mechanisms can thus be identified. Consequently, a better understanding of their dynamics 
can be reached. Among these are the systems that coarsen [1–6].

Coarsening or phase ordering kinetics is the process whereby an open system orders locally in its equilibrium states 
until the maximal order compatible with thermal fluctuations, conservation laws and boundary conditions is achieved. This 
phenomenon occurs when a macroscopic system is taken across a continuous phase transition by changing (abruptly, or 
slowly though not quasi-statically) one of its parameters or the environmental conditions. In this note, we focus on classical 
systems though, in principle, similar questions could be asked in quantum problems. Typical examples of coarsening systems 
are magnets taken from their paramagnetic to their ordered phase or, say, water and oil mixtures taken into demixing 
conditions.

The characterisation of coarsening has been largely circumscribed to the one of the space–time correlation [1–4,6] and 
linear response [4,7,8] functions, while the direct analysis of the morphology of the spatial structures has remained, in 
comparison, much less developed. However, this is a problem of fundamental but also practical interest since, from a mate-
rials science point of view, not only the average grain size but also its stochastic counterpart, the size distribution function, 
influences many material properties.

The morphology of critical equilibrium systems has been well characterised by a plethora of studies of the statistical 
and fractal properties of different kinds of geometrical structures [9–13]. In particular, the distributions of domain sizes, 
Fortuin–Kasteleyn cluster areas, interfaces lengths, winding angles, etc. are known. In contrast, a similar characterisation 
of systems evolving out of equilibrium after quenches across and to a critical point has not been performed yet, with the 
exception of two prominent cases. One is the distribution of droplets in Ostwald ripening, the process whereby the droplets 
of a minority phase diluted in a majority one organise, and has been the focus of much attention since the publication of the 
celebrated Lifshitz–Slyozov–Wagner theory [14,15]. The other one is the characterisation of small domains in polycrystalline 
formation [16], magnetic grains [17] soap froths [18,19] and biological tissues [20,21] usually done using kinetic Potts 
models.

In recent years, an impressive theoretical, numerical and experimental effort has been devoted to the measurement of 
the density of defects left in a system after its slow quench through a second-order phase transition [22] (the defects could 
be domain walls, vortices, or others depending on the system). However, little is known about the size distribution, geometric 
properties and spatial organisation of the defects inherited from such slow quenches.

A series of works aim at start filling this hole. In this article, I will shortly summarise recent advances in this line of 
research. I will focus on two-dimensional spin models, where most of the studies have been performed. I will describe 
results for the ferromagnetic 2d Ising and Potts spin models with microscopic dynamics satisfying detailed balance, and the 
planar voter model that goes beyond the physically constrained dynamic rules. The effects of quenched disorder will be 
shortly mentioned. A few words on 3d systems, including spin models and continuous field theories, will also be written. 
A final discussion section closes the paper with ideas for future research.

1.1. Models

The classical Ising model is defined by the Hamiltonian

H = − J
∑
〈i j〉

si s j (1)

with J > 0. The bimodal spin variables take values si = ±1. The energy function of the classical Potts model is given by

H = − J
∑
〈i j〉

δsi s j (2)

with si = 0, . . . , q − 1. In both cases, the sum runs over nearest-neighbours on a finite-dimensional lattice. Both models 
undergo a second-order phase transition at a finite temperature as long as 2 ≤ q ≤ 4 and d ≥ 2. The Ising model is the 
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