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A peer punisher directly imposes fines upon defectors at a cost to himself. It is one of the mechanisms
promoting cooperation, which is ubiquitous in nature. Typically, it is assumed that a peer punisher
punishes provided that there is one defector in the group. The threshold that triggers punishment,
however, is not necessarily one. The larger the threshold is, the more tolerant the peer punisher is.
We study the evolutionary dynamics of those diverse tolerant peer punishment strategies in public goods
game. We find that, i) less tolerant punishers prevail over tolerant ones; ii) large group size could enhance
punishment, in contrast with the case in the first-order cooperative dilemma. Our analytical results are
based on weak selection limit and large population size, which are verified by simulations. Our work
sheds light on how punishment of diverse tolerance evolves.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Public goods game (i.e. PGG) is a collective dilemma present in
the social activities [1-4]. Although mutual cooperation achieves
the maximal income for the whole community, the egoism drives
individuals to free ride. Cooperation is exploited by defection re-
sulting in “The Tragedy of the Commons” [5]. This problem can
be solved by many mechanisms including direct and indirect reci-
procity [6-13]. The last decade has seen an intensive study on how
punishment, implying that one pays a cost to itself to incur a cost
for the opponent, promotes cooperation [14-19]. In addition, hu-
man behavior experiments have shown that punishment is likely
if it is optional [20,21].

Punishers bear extra costs, although punishment suppresses
defection. In this case, punishers are worse off than those who
contribute but not punish. Therefore costly punishment is an al-
truistic act. Based on evolutionary theory, the second-order free
riders who contribute but not punish are beneficial over punish-
ers. It yields the so-called “the second-order cooperative dilemma”
[14,22]. In this case, we are tackling the dilemma between punish-
ers and non-punishers. The evolution of peer punishment has been
intensively addressed [14-17,19]. Here peer punishment means
that individuals privately sanction a defector in the group [14-16].
Many mechanisms are found to sustain peer punishment, such as
voluntary participation [4,14,15,23], spatial interactions [1,2,17,24],
probabilistic sharing [25] and random explorations [15]. However,
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it has been typically neglected that people are not always sensi-
tive to defection and sometimes show tolerance towards it. In fact,
this idea of tolerance has been present in direct reciprocity. “tit for
tat” (i.e. TFT) can be outperformed by “generous tit for tat” (i.e.
GTFT) [26]. Here GTFT cooperates after a co-player cooperates but
also cooperates with a certain probability after the opponent de-
fects [26,27]. Thus a GTFT can be seen as a tolerant TFT. In the
same way, peer punishers can also be insensitive to defection in
the group. It may be attributed to two reasons: one is that a pun-
isher does not recognize free riders. The other is that a punisher
tolerates free riders when they are few even if the punisher has
recognized them.

Inspired by these, we try to investigate how the tolerance alters
the fate of punishment. For the sake of simplicity, we assume that
individuals are with perfect recognition of all the others’ strate-
gies, and do not take into account the cost of this recognition [4,
28]. In particular, we propose that each punisher’s tolerance is cap-
tured by the number of defectors that triggers punishment. Thus
a tolerant punisher cooperates if the number of defectors is be-
low its tolerance value and punishes otherwise. In particular, our
peer punishers degenerate to the classic cooperator, who cooper-
ates without punishing, provided the tolerance is the group size;
they degenerate to the classic peer punishers provided the tol-
erance is one. Thus the introduction of the tolerance unifies and
generalizes previous strategies.

The more tolerant peer punishers pay less cost than the less
tolerant ones in a group with no less than one defector. Thus, it
seems that the more tolerant peer punishment strategy prevails,
but is it true? In general, we tackle the condition under which peer
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Table 1
Definitions of symbols.
Symbol Definition
N Population size
M Group size
r Enhancement factor for the public goods game
a Threshold number of defectors that triggers punishment in group interactions
v Cost of punishment
w Fine imposed on defectors
P Average payoff of Player K
P Average payoff of Player L
B Intensity of selection, 8 =0 means neutral evolution
i Mutation rate
n Number of strategies
(B) Distribution of the strategies in the stationary state as a function
of intensity of selection B
i Average abundance of strategy i in the stationary state
Pq Peer punishers with tolerance value a
C Cooperation strategy
D Defection strategy
weril3 Minimum fine for defectors such that punishment prevails for group size 3
Weril4 Minimum fine for defectors such that punishment prevails for group size 4

Fig. 1. Diversified tolerant peer punishers. P, contributes to the common pool as
a cooperator in the first-order social dilemma, punishes when there are at least
a defector opponents, and does not punish otherwise in the second-order social
dilemma. In the illustration, Py, P, and D coexist in the group of size 3. In this
case, Py contributes to the common pool and punishes the defector, since there
is 1 defector in the group. P,, however, does not punish the defector, since there
is only one defector in the group, which is not sufficient to trigger its action of
punishment. In fact, P, only punishes defectors if all the other group members are
defectors.

punishment prevails over defection when the tolerance is taken
into account.

The article is organized as follows. The model of tolerant pun-
ishment in finite populations is proposed in Section 2. In Section 3,
we analyze the evolutionary results of competing strategies in-
cluding tolerant punishment, cooperation and defection. Moreover,
individual-based simulations are performed to verify the analytical
results. In Section 4, we summarize and discuss the results.

2. Evolutionary process

We focus on M-player compulsory PGG in which all players
enjoy the benefit in finite well-mixed populations [29,30] (see Ta-
ble 1). The M individuals are randomly chosen from a population
of N. Cooperators and all peer punishers contribute a fixed amount
to the public good. We assume it equals to 1 without loss of gener-
ality. Defectors, however, contribute nothing. All contributions are
summed up, multiplied by the enhancement factor r, and equally
distributed by all the participants irrespective of their contribu-
tions. 1 <r < M is typically assumed to model the conflicts be-
tween group benefits and individual benefits. In this case, a group
of cooperators are better off than a group of defectors, yet defec-
tors outperform cooperators in any mixed groups. After the PGGs,

peer punishers P, with threshold value a would not punish the
defectors in the group if the number of defectors is less than the
threshold a, and punish otherwise. Then the payoff for each ex-
ploiter is reduced by w, and the payoff for each punisher by v.
Suppose that v is strictly smaller than w (v < w). As one extreme
case of a =1, the punishers are nothing but unconditional peer
punishers which have been intensively studied before [4,14,15,23];
As the other extreme case of a = M, the tolerant peer punish-
ers degenerate to unconditional cooperators. Thus, the introduction
of tolerance bridges unconditional cooperation and unconditional
peer punishment, and puts these two strategies into one frame-
work. Meanwhile, the diversity of tolerant punishment strategies is
also induced by different thresholds of tolerance values. Thus the
number of all possible tolerant punishment strategies represents
the diversity of punishment, which equals to M — 1 (Fig. 1). We
adopt the pairwise comparison rule with explorations to update
the strategy of players [31]: One individual is chosen randomly,
namely L. It explores or mutates to any other strategy with a
given exploration rate w. Otherwise, a player K is chosen from
the rest of the population. And player L adopts the strategy of
player K with probability (1 + exp(—B(Px — P1)))~!, where Py
and P; denote the average payoffs of K and L [16]. Note that
the average payoffs P; and Pk depend on players’ strategies and
the frequencies of the strategies. The imitation strength 8 mea-
sures how important individuals deem the impact of the game in
decision making. When the imitation strength g is large, a more
successful player is almost always imitated, and the less successful
one never is; When B vanishes, the updating of strategy is nearly
random.

This evolutionary process is an ergodic stochastic system due to
the presence of the exploration rate, i.e., non-vanishing u [32-35].
This leads to the existence of average abundance in the long run
[32,33]. The average abundance of the stochastic system for n
strategies m (B) is given by m(8) = (71, M2, 3, -+, Ty), Where m;
denotes the average abundance of strategy i. In the case of neu-
tral selection, the average abundance of all strategies is the uni-
form distribution 1/n. Here we define that strategy i is favored
by selection if 7; > 1/n, and is disfavored if 7; < 1/n [32,33]. In
the following, we theoretically address which tolerant punishment
strategy is favored.

3. Results and analysis

Firstly, we investigate how the evolutionary fate of the classic
peer punishment strategy is altered by the presence of multiple
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