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We present a theoretical model to study the effects of surface tension on the growth of single and 
multiple bubbles in the Rayleigh–Taylor instability. The asymptotic solution for a single bubble is obtained 
and is expressed in terms of the Eötvös number. The bubble merger process is also demonstrated from 
the model. We find the contrasting effects of surface tension: it reduces the growth of a single bubble, 
but enhances the mixing rate of multiple bubbles at a late time. The bubble merger of Rayleigh–Taylor 
instability follows the same scaling law of the growth of mixing zone even when surface tension exists, 
but the growth coefficient in the scaling law increases with surface tension. A comparison with an 
experimental result is in good agreement.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Rayleigh–Taylor (RT) instability occurs when a heavy fluid is 
supported by a lighter fluid in a gravitational field [1,2]. A char-
acteristic of RT instability is fingers, known as bubble and spike, 
of each phase extending into the region occupied by the opposite 
phase. The RT instability with initial random perturbations results 
in the bubble merger and turbulent mixing [3]. The RT instability 
plays an important role in many fields such as inertial confinement 
fusion, astrophysical supernova and supersonic combustion. To in-
vestigate the dynamics of this instability, extensive researches have 
been carried out in last decades [3,4].

The RT instability arises commonly with surface tension. The 
evolution of RT instability with surface tension exhibits a variety of 
interesting behaviors such as capillary waves, pinching and break-
up [5,6]. At the linear stage of the instability, it is well known 
that surface tension produces a cut-off wave number and stabi-
lizes high modes [7]. Sohn [8] studied effects of surface tension 
on the nonlinear evolution of RT instability and found that surface 
tension reduces the asymptotic velocity of a single-mode bubble. 
However, there have been only a few studies on the multi-mode 
RT instability when surface tension exists [9–12]. Moreover, some 
of these studies reported contrasting results on the growth rate of 
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mixing zone. Cherfils and Mikaelian [9] first discussed the effect 
of surface tension (and also viscosity, etc.) on the RT mixing. Ap-
plying a simple diffusion model, they showed that surface tension 
affects the growth of RT mixing at early times, but has little ef-
fect at late times. From LEM (Linear Electric Motor) experiments, 
Dimonte and Schneider [10] commented that the mixing rate of 
RT instability is increased when surface tension is given, attribut-
ing its increase primarily to the enhanced meniscus at the wall. 
Young and Ham [11] conducted full numerical simulations for the 
RT mixing with surface tension and showed that surface tension 
reduces the effective mixing rate. These contrasting results of the 
previous studies are the motivation of our work. In this Letter, we 
investigate effects of surface tension on the growth of single and 
multiple bubbles of RT instability, from a theoretical model.

A central issue in the turbulent mixing by RT instability is a 
scaling law for the growth of the mixing zone. It has been found 
that the bubble front in the RT mixing grows self-similarly as

hb = αb
ρ1 − ρ2

ρ1 + ρ2
gt2, (1)

and the coefficient αb is generally insensitive to the density ra-
tio [4,10,13,14], where ρ1 and ρ2 are the densities of heavy and 
light fluids, and g is the gravitation acceleration. The spike has a 
similar scaling law as the bubble, and the growth rate of spikes 
is similar to that of bubbles for small density ratios. However, an 
asymmetry has been observed between the growth rate of bubbles 
and the growth rate of spikes for moderate to large density ratios, 
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i.e. αs > αb , and αs increasing with the density ratio. When sur-
face tension is present on the interface, one may question several 
issues on the RT mixing, which are not discovered yet: Does the 
bubble growth of the RT mixing with surface tension follow the 
scaling law (1)? If it does, how much and why does the growth 
coefficient αb increase or decrease? Is it consistent with the mo-
tion of a single-mode bubble? We will address these questions in 
this Letter.

Theoretical models for comprehensive descriptions of the mo-
tion of bubbles at unstable interfaces are the potential flow models 
proposed by Layzer [15] and Zufiria [16]. Layzer [15] presented a 
model, based on the approximate description of the flow near the 
bubble tip and described the nonlinear evolution of the RT bubble 
of infinite density ratio. Since Layzer’s work, it has been stud-
ied in various contexts; for example, finite density ratio [17,18], 
surface tension and viscosity [8], magnetic field [19], and viscoelas-
ticity [20]. A limitation of the Layzer model is that it fails to give a 
quantitatively correct prediction for the bubble curvature [21]; the 
asymptotic bubble curvature from the model is always a constant, 
regardless of physical effects. In fact, the bubble curvature is an 
important parameter because it sets a length scale and plays a key 
role in the bubble merger process in the RT mixing. Note that other 
limitations of the Layzer model were reported by Mikaelian [22].

Another type of the potential-flow model is a source-flow 
model by Zufiria [16], which describes the bubble as the potential 
with a point source. This model provides more accurate prediction 
for the bubble motion [21]. The source-flow model also has been 
extended to various cases: the finite density contrast [23,24] and 
viscosity [25]. In this Letter, we apply the source-flow model to the 
unstable interface with surface tension and present the solution of 
a single bubble and the evolution of multiple bubbles.

2. Single bubble model

We consider an interface with surface tension, in a vertical 
channel, between two fluids with different densities in two di-
mensions. The fluids are assumed as incompressible, inviscid and 
irrotational. The upper fluid is heavier than the lower fluid, i.e. 
ρ1 > ρ2. From the assumption of potential flows, there exist com-
plex potentials W i(z) = φi + iψi for i = 1, 2, where φ and ψ are 
the velocity potential and the stream function. The location of the 
bubble tip is Z(t) = X(t) + iY (t), in the laboratory frame of refer-
ence, with Y (t) = D/2, where D is the width of the channel. The 
bubble moves in the x direction with the velocity of the bubble 
tip U . (See Fig. 1 in Ref. [24].) We choose a frame of reference 
(x̂, ŷ) comoving the bubble tip. In the moving frame, the interface 
near the bubble tip is approximated by

η(x̂, ŷ, t) = ŷ2 + 2R(t)x̂ = 0, (2)

where R(t) is the radius of curvature. Following the Zufiria–Sohn 
model [23], we take the complex potentials

W1(ẑ) = Q 1 ln (1 − e−k(ẑ+H)) − U ẑ, (3)

W2(ẑ) = Q 2 ln (1 − e−k(ẑ−H)) + (K − U )ẑ, (4)

where Q i, i = 1, 2, represent the source strength, H > 0 represent 
the distance from the source, and k = 2π/D is the wave number.

The evolution of the interface is determined by the kinematic 
condition and the Bernoulli equation,

Dη

Dt
= 2

dR

dt
x̂ + 2Rui + 2 ŷvi = 0, i = 1,2, (5)

ρ1

[
∂φ1

∂t
+ 1

2
|∇φ1|2 +

(
g + dU

dt

)
x̂

]

− ρ2

[
∂φ2

∂t
+ 1

2
|∇φ2|2 +

(
g + dU

dt

)
x̂

]
= p2 − p1, (6)

where ui and vi , i = 1, 2, are x̂ and ŷ components of the inter-
face velocity taken from the upper and lower fluids. The kinematic 
condition implies the continuity of the normal component of fluid 
velocity across the interface. By the Laplace–Young boundary con-
dition, the pressure jump across the curve is balanced by the in-
terfacial force due to surface tension

p2 − p1 = σκ, (7)

where σ and κ represent the surface tension and curvature of the 
interface, respectively. The interface curvature is expressed as

κ = − x̂yy

(1 + x̂2
y)

3/2
. (8)

Therefore, the Bernoulli equation becomes

ρ1

[
∂φ1

∂t
+ 1

2
|∇φ1|2 +

(
g + dU

dt

)
x̂

]

− ρ2

[
∂φ2

∂t
+ 1

2
|∇φ2|2 +

(
g + dU

dt

)
x̂

]
= −σ

x̂yy

(1 + x̂2
y)

3/2
.

(9)

The derivation of equations for the source-flow model with surface 
tension is basically similar to that without surface tension [24], 
and thus only the resulting equations are given below.

Using Eqs. (2)–(4) and satisfying the kinematic condition (5) up 
to the first order in x̂, we have

dX

dt
= U = c1 Q 1 = c̃1 Q 2 + K , (10)

dR

dt
= −Q 1(3c2 + c3 R)R = −Q 2(3c̃2 + c̃3 R)R. (11)

The first and second order equations in x̂ of the Bernoulli equation 
(9) are given by

(c1 + c2 R)
dQ 1

dt
+ Q 1(c2 + c3 R)

dH

dt
− Q 2

1 c2
2 R + g

= μ

[
(c̃1 + c̃2 R)

dQ 2

dt
+ dK

dt
− Q 2(c̃2 + c̃3 R)

dH

dt
− Q 2

2 c̃2
2 R + g

]

+ 3σ

ρ1 R2
, (12)

( c2

2
+ c3 R + c4

6
R2
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dt
+ Q 1

( c3

2
+ c4 R + c5

6
R2

) dH

dt
+ 1

2
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2
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6
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(
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2
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6
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]
+ 15σ

2R3ρ1
, (13)

where

F1 = Q 2
1

[
c2

2 − 2c2c3 R +
(

c2
3 − 4

3
c2c4

)
R2

]
,

F2 = Q 2
2

[
c̃2

2 − 2c̃2c̃3 R +
(

c̃2
3 − 4

3
c̃2c̃4

)
R2

]
,

and μ = ρ2/ρ1 denotes the density ratio. The expressions for ci
are given in Ref. [24] and c̃n(H) = cn(−H). Equations (10)–(13) de-
termine the evolution of a single bubble of arbitrary density ratio 
with surface tension.
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