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Using a Lotka–Volterra type system on a hexagonal lattice we derive and study a novel, strongly nonlinear 
dispersive equation ut = ∂x(u + �u)n , n > 1, the n-Cubic equation, which supports the formation and 
propagation of planar compactons endowed with extended regularity at their perimeter. Compactons 
may be uni-modal or, if n is odd, multi-modal as well. Both evolution and interaction of compactons are 
presented and discussed.
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1. Introduction

The subject of this communication are planar genuinely nonlin-
ear dispersive “n-Cubic” equations [1]

∂u(�x, t)

∂t
= ∂

∂x

((
Lu(�x, t)

)n
)

, n > 1 (1.1)

where

L .= 1 + �, �
.= ∂2

x + ∂2
y and �x = (x, y),

which balance multi-dimensional dispersion with convection in 
x direction (e.g. direction of gravity). The one dimensional ren-
dition of (1.1) has been derived and studied in [2] as a quasi-
continuum approximation of a class of Lotka–Volterra lattices. 
A similar derivation for the planar case will be presented in the 
next section. A family of planar compactons were originally intro-
duced and studied in [3]. The most notable feature of the n-Cubic 
equations to be studied is the extended smoothness of their com-
pactons as compared with previously studied models with simi-
larly nonlinear dispersion.

The plan of the paper is as follows: In section 2 which is the 
core of the paper we

• Derive Eq. (1.1) as a quasi-continuum rendition of a hexagonal 
lattice.
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• Unfold the underlying Hamiltonian structure of Eq. (1.1) and 
the consequent conservation laws.

• Derive the traveling waves of Eq. (1.1) and confirm the 
extended regularity of the radially symmetric compactons. 
A noteworthy feature of Eq. (1.1) is the countable number of 
multi-modal compactons available for odd n’s.

In section 3 we study numerically evolution, interaction and gen-
eral dynamics of compactons and in section 4 we summarize our 
results. In the Appendix we introduce a modified Petviashvili algo-
rithm to compute the traveling waves on a planar lattice.

Finally, since emergence of compactons and their regularity is 
the main subject of the paper, it behooves us to provide a brief 
overview of compactons bearing equations. Compactons have been 
introduced in [4] as traveling solitary wave solutions with a com-
pact support of the nonlinear dispersive 1 + 1 dimensional K (m, n)

equations

K (m,n): vt = (vm)x + (vn)3x, v = v(x, t). (1.2)

The N + 1 dimensional CN (m, a, b) equations [5],

CN(m,a,b): vt =
(

vm
)

x
+

(
va�vb

)
x
, v = v(x, t, x2, x3, . . . , xN)

(1.3)

extend the K (m, n) equations into a broader class of third order 
nonlinear dispersive equations, both in the form of the nonlinearity 
and the spatial dimension. Let s = x + λt and r =

√
s2 + ∑N

i=2 x2
i . 

Then radially symmetric traveling waves vc(r) of (1.3) satisfy
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Fig. 1. Hexagonal lattice unit cell.

λvc = vm
c + va

c�r vb
c , where �r = ∂2

r + N − 1

r
∂r . (1.4)

Their degree of smoothness at the boundaries is then determined 
by the total degree of dispersive nonlinearity; n = a + b, [3,5,6]. At 
the edge of the support of a compacton one finds [5]

vc(r) ∼ r2/(n−1)H(r), (1.5)

where H(s) =
{

1, s ≥ 0

0, s < 0
is the Heaviside function. Note that the 

degree of smoothness is independent of the spatial dimension N .
The summarized features will serve as a reference for compari-

son with the compactons to be presented in the following sections.

2. Properties of the planar n-cubic equations

2.1. Lattice quasi-continuum

In 1D, the n-Cubic equations emerge as a quasi-continuum ap-
proximation of a Lotka–Volterra type chain [2,7,8]

hU̇ j = A(U j, U j±1)
(
U j+1 − U j−1

)
,

A(U j, U j±1)
.= a0U j + a1

(
U j+1 + U j−1

)
. (2.1)

Models like (2.1) emerge in biological, physical, or social interac-
tions studies [9–13]. When motion takes place on a zero back-
ground the chain (2.1) has been shown to support discrete trav-
eling waves, discretons, which decay at a doubly exponential rate 
(contrast it with the usual exponential decay of solitons and their 
discrete counterparts). In models with a1 = 0, Eq. (2.1) is some-
times referred to as discrete KdV. The motion is then possible only 
on a non-trivial background.

Here we reconsider a dynamical system introduced in [14], 
which extends the Lotka–Volterra chain (2.1) into a planar lattice. 
The hexagonal lattice (see Fig. 1) is a natural discrete antecedent 
of nonlinear isotropic continuum models being, in fact, the only 2D 
lattice which in the h → 0 limit yields a continuum with isotropic 
solitary patterns (see discussion in section III.A of [15]). In fact, the 
isotropy will be manifested in the rotationally invariant form of the 
equation governing the structure of solitary waves (2.16). We thus 
discuss a lattice with the basis vectors

�x1 = h(1,0), �x2 = h

2
(1,

√
3), �x3 = h

2
(1,−√

3). (2.2)

A planar extension of (2.1) is then

hU̇o = A · ∇dU , where A .= 1

3

(
Uo + 1

6

3∑
i=1

(U �xi
+ U−�xi

)

)
(2.3)

and ∇dU
.= 2(U�x1

− U−�x1
) +

3∑
i=2

(U�xi
− U−�xi

).

Given the complexity of the system (2.3), to gain insight into 
its dynamics we imitate it with a quasi continuum. Expanding 
Eq. (2.3) yields

Ut =
(

2U + h2

4
�U +O(h4)

)(
2Ux + h2

4
�Ux +O(h4)

)

= 2
(

U 2
)

x
+ h2

2
(U�U )x + h4

32

(
(�U )2

)
x

(2.4)

+ h4

32

(
U�2U

)
x
− h4U

120

(
5∂2

x ∂2
y + ∂4

x

)
Ux +O(h6).

In a conventional weakly nonlinear approach one sets U = 1 + εu, 
ε 	 1:

ut = 4ux + 4εuux + h2

2
�ux +O(εh2) (2.5)

and balances nonlinearity with dispersion via ε = h2/8. Define x̃ =
x +4t and t̃ = h2t/2 and restore the original variables to obtain, up 
to O(ε);

ut = uux + �ux (2.6)

which is the Zakharov–Kuznetsov, ZK, equation [16], known to 
support planar solitary waves.

Since we address a genuinely nonlinear regime on a zero back-
ground we apply the expansion (2.4) as is. If, cf. [14], only O(h2)

terms are retained, then after the normalization

x̃ = 2
√

2

h
x, ỹ = 2

√
2

h
y, t̃ = 2

√
2

h
t, (2.7)

and x̃ → x, ỹ → y, t̃ → t , U = v/2, one has

vt = (v2)x + 2(v�v)x (2.8)

which, up to a normalization, is the C2(2, 1, 1) equation, see sec-
tion 1 (the coefficient 2 was retained for a later use). Eq. (2.8) has 
the explicit compacton solution

v(r, t) = λ

(
1 − J0(r/

√
2)

J0(ξ1)

)
H(

√
2ξ1 − r),

r =
√

(x + λt)2 + y2, (2.9)

where ξ1 > 0 is the location of the first zero of J1. At the edge of 
the compacton v and vr vanish but the second order derivatives 
of v have a jump discontinuity.

The next step is a bit unorthodox; since x → x/h, y → y/h
eliminates h to all orders from expansion (2.4), the expansion is not 
asymptotic. Thus there is no particular significance to terminate 
the expansion at a particular order of h. With an equal justifica-
tion one may reorder the expansion using another organizing rule. 
Our choice is to retain all terms up to third order spatial deriva-
tives, the second row in (2.4), thus keeping the same degree of 
complexity in derivatives. This amounts to adding the h4

32

(
(�u)2

)
x

term which, surprisingly enough, enables to cast the problem into 
the simple form

Ut = 2

((
U + h2

8
�U

)2)
x

.

Using normalization (2.7) and restoring the original variables with 
U = w/2 yields the n = 2 variant of the n-Cubic equation

wt =
(
(w + �w)2

)
x
.

An n-Cubic extension may be similarly derived via a lattice of the 
form
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