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We present the exact solution of the 1D classical short-range Potts model with invisible states. Besides 
the q states of the ordinary Potts model, this possesses r additional states which contribute to the 
entropy, but not to the interaction energy. We determine the partition function, using the transfer-matrix 
method, in the general case of two ordering fields: h1 acting on a visible state and h2 on an invisible 
state. We analyse its zeros in the complex-temperature plane in the case that h1 = 0. When Im h2 = 0
and r ≥ 0, these zeros accumulate along a line that intersects the real temperature axis at the origin. 
This corresponds to the usual “phase transition” in a 1D system. However, for Im h2 �= 0 or r < 0, the line 
of zeros intersects the positive part of the real temperature axis, which signals the existence of a phase 
transition at non-zero temperature.

© 2017 Published by Elsevier B.V.

1. Introduction

Few models in statistical physics can be solved exactly and 
many of those that can are in a single dimension [1]. Knowing the 
behaviour of a system in one dimension (1D) can help one to un-
derstand and predict its behaviour in higher dimensions too. Also 
some chemical compounds are effectively described by quasi-1D 
models [2–6]. For these reasons, 1D models are interesting from 
both theoretical and experimental points of view.

In the 1920s Wilhelm Lenz and Ernst Ising suggested and in-
vestigated the first microscopic model of ferromagnetism [7,8]. 
Theirs involved a one-dimensional lattice occupied by classical 
spins which can only be in one of two states: up or down. In the 
short-range version, only nearest neighbouring spins are allowed 
to interact. Ising showed that this model has no phase transition 
at any physically accessible (i.e., non-zero) temperature T [8]. This 
served as the first and archetypal example of the absence of a 
finite-T phase transition in 1D classical systems with short-range 
interactions [9]. Later, in their famous book [10], Landau and Lif-
shitz gave a heuristic argument that for classical systems there is 
no phase transition at non-zero temperature in 1D. The approach 
is based on separately evaluating contributions to the free energy 
F = E − T S coming from the interaction energy E and the entropy 
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S . For the Ising model there are two ground states in which all 
spins are either up or down. At zero temperature the system is in 
one of these states. At finite temperatures, domain walls separate 
regions of up- and down-spins. Each domain wall “costs” energy 
(i.e., it increases the interaction energy E). But in the 1D case 
this is outweighed by the entropic contribution coming from the 
number of ways of placing domain walls on the chain. See, e.g., 
Ref. [11] where it is explicitly shown that adding domain walls 
reduces the free energy. Therefore, at any temperature it is ener-
getically favourable for domain walls to be inserted. This means 
the system cannot become ordered and there is no phase transi-
tion in such 1D systems.

van Hove proved the absence of a phase transition in one-
dimensional fluid-like systems of particles with non-vanishing in-
compressibility radius and a finite range of forces [12]. This was 
extended by Ruelle [13] to lattice models. These results are based 
on the Perron–Frobenius theorem [14]. However, and as empha-
sised by Cuesta and Sánchez, none of these theorems preclude 
the existence of thermodynamic phase transitions in general 1D 
systems with short-range interactions [15]. Indeed Cuesta and 
Sánchez gave examples of such models and Theodorakopoulos also 
discussed how the no-go theorems might be circumvented [16]. In 
Refs. [17,18] the 1D multispin-interaction Ising and Potts models 
in field are mapped onto corresponding zero-field 2D models with 
nearest neighbours interactions. Additionally, quantum 1D models 
offer further examples of systems which can undergo a phase tran-
sition at non-zero temperatures because they are related to 2D 
classical systems [19].
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In the light of these enduring discussions, it is interesting to 
investigate further circumstances in which classical systems might 
exhibit a phase transition in 1D. In particular, we are interested in 
a mechanism in which entropy production can be suppressed in 
order to sidestep the conditions of the arguments and theorems 
discussed above. To do so we consider the Potts model with invis-
ible states which was introduced a few years ago [20,21] in order 
to explain some questions about the order of a phase transition 
where Z(3) symmetry is broken. It differs from the ordinary Potts 
model [22,23] by adding non-interacting states; if a spin is in one 
such state, it is “invisible” to its neighbours. Originally, the corre-
sponding Hamiltonian was written in the form

H = −
∑

<i, j>

δSi ,S j

q∑
α=1

δSi ,αδS j ,α, (1)

where q and r are the number of visible and invisible states of the 
Potts variable

si = 1, . . . ,q,q + 1, . . . ,q + r . (2)

The first sum in (1) is taken over all distinct pairs of interacting 
particles, and the second sum requires both of the interacting spins 
to be in the same visible state. From now and on we will use the 
notation (q, r)-state Potts model for model with q visible and r
invisible states.

In the ordinary Potts model [22], the parameter q ≥ 2 has been 
introduced as an integer denoting the number of (visible) states 
that a site can be in. However, it has been extended to other val-
ues too in order to describe bond percolation (q = 1), dilute spin 
glasses (q = 1/2), and gelation (q = 0) [23–25]. The parameter q
has been extended to complex values as well [26–29]. In a sim-
ilar way, although an initial interpretation of the parameter r is 
the number of invisible states, we extend it here to non-integer 
and even negative values. As we will show below, the latter cor-
responds to removing entropy from the system and will be key to 
inducing a phase transition.

Adding invisible states does not change the spectrum of the 
model, it only changes the degeneracy of energy levels (the num-
ber of configurations with a given energy). Even though invisible 
states do not change the interaction energy, since they change the 
entropy they affect the free energy. As a consequences, for exam-
ple, an increase in the number r of invisible states may cause a 
phase transition to change from second to first order [20,30]. For 
example the (2, 30)-state model on a square lattice undergoes the 
first order transition, while the ordinary (2, 0)-state Potts model 
(i.e. the Ising model) is an iconic example of a continuous transi-
tion.

The Potts model with invisible states describes a number of 
models of physical interest. In particular, the (1, r)-state model 
can be mapped to the Ising model in a temperature-dependent 
field [31]. The 1D (1, r) case with nearest-neighbour interactions is 
equivalent to the Zimm–Bregg model for the helix-coil transition 
[31]. The multi-spin extension of this model possesses a re-entrant 
phase transition and is in good agreement with experimental ob-
servations for polymer transitions [32,33]. The (2, r)-state Potts 
model without external fields is equivalent to the Blume–Emery–
Grifiths (BEG) model [20,34,35] with a temperature dependent 
external field. Furthermore, the general q and r case can be in-
terpreted as a diluted Potts model [20,30]

H ′ = −
∑

<i, j>

δσi ,σ j (1 − δσi ,0) − T ln r
∑

i

δσi ,0, (3)

where σi = 0, 1, . . . , q is a new spin variable and all invisible states 
are gathered into one the zeroth state σi = 0.

In this paper we perform an analysis of the partition function 
zeros to obtain the exact solution for the 1D Potts model with in-
visible states. In achieving this, we add another exact result to the 
existing collection of exactly solved models in statistical mechan-
ics. As we will show below, although one-dimensional, the model 
manifests a transition at non-zero temperature provided some un-
usual conditions are assumed. We will discuss regimes in which 
such behaviour is observed and a possible connection with quan-
tum systems.

The rest of the paper is organised as follows: in Section 2 we 
present the exact solution using the transfer-matrix method, then 
in Section 3 the existence of a phase transition at non-zero tem-
perature is demonstrated using partition function zeros, and finally 
conclusions are given in Section 4.

2. Exact solution of the Potts model with invisible states

Let us consider the (q, r)-state Potts model on a chain con-
sisting of N spins with only nearest-neighbour interactions subject 
to two separate magnetic fields h1 and h2 acting on the first visible 
and the first invisible states respectively. Imposing periodic bound-
ary conditions, the Hamiltonian of such a system may be written 
as

H(q,r) = −
∑

i

q∑
α=1

δsi ,αδα,si+1 − h1

∑
i

δsi ,1 − h2

∑
i

δsi ,q+1 , (4)

where the sum over i is taken over all sites of the chain.
We will use the transfer matrix formalism [36–38] to obtain 

the exact solution of the model (4). The Hamiltonian (4) can be 
expressed as a sum of terms representing one bond each, so that 
H(q,r) = ∑

i Hi where

Hi = −
q∑

α=1

δsi ,αδα,si+1 − h1δsi ,1 − h2δsi ,q+1 . (5)

Then the partition function can be transformed to

Z =
∑

s

exp
[−βH(q,r)

] =
∑

s

∏
i

exp (−βHi) , (6)

where β = 1/kT and k is the Boltzmann constant. Now it is easy 
to define the (q + r) × (q + r) square transfer matrix with elements

Tij = exp

[
β

(
δsi ,s j

q∑
α=1

δsi ,α + h1δsi ,1 + h2δsi ,q+1

)]
. (7)

Let us denote

t = e−β , z1 = eβh1 , z2 = eβh2 . (8)

With this notation, positive values of temperature T correspond 
to t ranging from zero to one, and the elements of the transfer 
matrix can be written in the compact form: T11 = z1/t; Tii = t−1

for 1 < i ≤ q; Ti1 = z1; T(q+1)i = z2; and all remaining elements 
equal to 1.

Based on the transfer-matrix symmetry it is easy to show that 
it has five different eigenvalues. The eigenvalue λ0 = 0 is (r − 1)

times degenerate because the final r columns of the matrix are 
proportional. Because (q − 1) elements of the main diagonal are 
equal to t−1, choosing λ = t−1 − 1 one can find q − 2 linear inde-
pendent eigenvectors. This reduces the problem to the determina-
tion of three more eigenvalues. They can be found using invariant 
permutations. The above considerations lead to the equation for 
the three remaining eigenvalues:
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