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Permutation entropy contains the information about the temporal structure associated with the 
underlying dynamics of a time series. Its estimation is simple, and because it is based on the comparison 
of neighboring values, it becomes significantly robust to noise. It is also computationally efficient and 
invariant with respect to nonlinear monotonous transformations. For all these reasons, the permutation 
entropy seems to be particularly suitable as a discriminative measure for unveiling nonlinear dynamics 
in arbitrary real-world data. In this paper, we study the efficacy of a conventional surrogate method 
with a linear stochastic process as the null hypothesis but implementing the permutation entropy as a 
nonlinearity measure. Its discriminative power is tested by implementing several analyses on numerical 
signals whose dynamical properties are known a priori (linear discrete and continuous models, chaotic 
regimes of discrete and continuous systems). The performance of the proposed approach in real-world 
applications (chaotic laser data, monthly smoothed sunspot index and neuro-physiological recordings) is 
also demonstrated. The results obtained allow us to conclude that this symbolic tool is very useful for 
discriminating nonlinear characteristics in very short and noisy data.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Determining whether a given time series comes from a deter-
ministic chaotic or a stochastic system can be a big challenge [1–3]. 
It is well-known that nonlinearity is a necessary condition for 
chaos. Consequently, to determine if an arbitrary time series is 
compatible with chaotic dynamics for modeling and classification 
purposes, it is first necessary to demonstrate that the dynamics 
producing the time series is, in fact, nonlinear. Furthermore, the 
detection of nonlinearity is not a trivial task especially for exper-
imental records that are often contaminated with unknown noise 
sources. Motivated by these facts, in the last decade, several tech-
niques for identifying nonlinear processes in observational data 
have been introduced [4–8]. Despite the existing contributions, dis-
criminating the nonlinear dynamics of a complex system from time 
series is still a challenging problem of current research [9].

In this paper, we implement and test the efficacy of the permu-
tation entropy (PE) as a discriminating statistic in a standard surro-
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gate framework [10] in order to detect nonlinearities in short and 
noisy time series data. The PE is the Shannon entropic measure 
evaluated using the successful encoding introduced by Bandt and 
Pompe (BP) [11] to extract the probability distribution associated 
with an input signal. Taking into account the widely recognized 
practical advantages of this symbolic information-theory quantifier, 
namely, i) simplicity, ii) low computational cost, iii) noise robust-
ness, and iv) invariance with respect to nonlinear monotonous 
transformations, PE is demonstrated to be an alternative and/or 
complementary approach to more traditional techniques for un-
veiling nonlinear structures from complex systems. The proposed 
nonlinearity test relies on the well-established method of surro-
gate data [10] just as many other nonlinear discriminating ap-
proaches [4–6,12], and, obviously, the generation of proper surro-
gates is essential for the test’s success. As will be shown below, 
linear and nonlinear short noisy scalar time series can be effi-
ciently characterized supporting a remarkable reliability of PE as 
a discriminator in practical contexts.

Even though the permutation entropy has been used in count-
less applications, it has been rarely implemented within a sur-
rogate framework for unveiling the nonlinear dynamics of com-
plex systems from time series. The analysis developed by Tony et 
al. [13], to identify the deterministic nature of pressure measure-
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ments from a turbulent combustor, is one of these rare exceptions. 
Taking into account that, to the best of our knowledge, the per-
formance of both techniques (permutation entropy and surrogate 
testing) together, as an unified approach, has not been analyzed in 
depth before, in this work we try to fill this gap through several 
numerical and real-world data tests. As it will be shown below, 
this approach is able to unveil the presence of nonlinear dynamics 
even in very short and noisy time series.

The remainder of the paper is organized as follows. In the next 
section, PE and the surrogate data analysis are briefly presented. 
Numerical and experimental analyses for testing the performance 
of the proposed nonlinearity test are detailed in Sections 3 and 4, 
respectively. Finally, Section 5 summarizes the results and contains 
concluding remarks.

2. Methodology

2.1. Permutation entropy

The symbolic encoding scheme due to BP [11], based on the 
ordinal relation between the amplitude of neighboring values of 
a given data sequence, has been implemented for estimating sev-
eral information-theory quantifiers from time series. The BP ordi-
nal method of symbolization naturally arises from the time se-
ries, inherits the causal information that stems from the tempo-
ral structure of the system dynamics, and also, avoids amplitude 
threshold dependencies that affect other more conventional sym-
bolization recipes based on range partitioning [14,15]. These traits 
could be the main reasons behind notable success, as is evidenced 
by the enormous amount of applications in heterogeneous fields 
(see, e.g., [16–26]). Furthermore, the ordinal pattern distribution is 
invariant with respect to nonlinear monotonous transformations. 
Thus, nonlinear drifts or scalings artificially introduced by a mea-
surement device do not modify the quantifiers’ estimations. It 
appears to be better suited to cope with usual problems (non-
stationarities, nonlinearities, noise distortions) encountered when 
studying real time series compared to range-based encoding meth-
ods. Within this appealing encoding procedure, PE is undoubtedly 
the most widely-used descriptor. It should be stressed here that 
this entropic measure is applicable to noisy real time series from 
all class of systems, deterministic and stochastic, without the need 
to require any knowledge of the underlying mechanisms. As stated 
by Garland et al. [27], “It does not rely on generating partitions, 
and thus does not introduce bias into the results if one does not 
know the dynamics or cannot compute the partition. Permutation 
entropy makes no assumptions about, and requires no knowledge 
of, the underlying generating process: linear, nonlinear, the Lya-
punov spectrum, etc.” Furthermore, the relationship between the 
PE and the Kolmogorov–Sinai (KS) entropy has been discussed by 
several authors before. Basically, the growth rate of the PE is often 
used as a proxy for the KS entropy [28]. For more details, please 
see Refs. [29–31]. The KS entropy, probably the most appropriate 
indicator for distinguishing irregular deterministic from stochastic 
dynamics, requires specific knowledge of the generating process 
for its correct estimation. Finding the generating partition is not 
feasible for experimental data since they are inevitably contami-
nated with noise [32]. Consequently, the PE, which does not rely 
on generating partitions, emerges as a practical alternative to char-
acterize data sets generated by an unknown dynamic process with 
unknown levels of noise [9].

Here, we will illustrate how to create ordinal patterns from the 
time series data with a simple example. Let us assume that we 
start with the time series X = {3, 2, 5, 8, 9, 6, 1}. In order to sym-
bolize the series into ordinal patterns, first, two parameters, the or-
der of the permutation symbols D > 1 (D ∈N, number of elements 

that form the ordinal pattern) and the lag τ (τ ∈ N, time separa-
tion between elements) are chosen. Next, the time series is parti-
tioned into subsets of length D with lag τ similarly to phase space 
reconstruction by means of time-delay-embedding. The elements 
in each new partition (of length D) are replaced by their rank in 
the subset. For example, if we set D = 3 and τ = 1, there are five 
different three-dimensional vectors associated with X . The first 
one (x0, x1, x2) = (3, 2, 5) is mapped to the ordinal pattern (102). 
The second three-dimensional vector is (x0, x1, x2) = (2, 5, 8), and 
(012) will be its related permutation. The procedure continues so 
on until the last sequence, (9, 6, 1), is mapped to its correspond-
ing motif, (210). In the case of two elements in the vector having 
the same value, the elements are ranked by index, for example, a 
vector (7, 8, 7), which does not appear in X , would be mapped 
to (021). Afterward, an ordinal pattern probability distribution, 
P = {p(πi), i = 1, . . . , D!}, can be obtained from the time series 
by computing the relative frequencies of the D! possible permu-
tations πi . Continuing with the example: p(π1) = p(012) = 2/5, 
p(π2) = p(021) = 0, p(π3) = p(102) = 1/5, p(π4) = p(120) = 1/5, 
p(π5) = p(201) = 0, and p(π6) = p(210) = 1/5. PE is just the 
Shannon entropy estimated by using this ordinal pattern proba-
bility distribution, S[P ] = − 

∑D!
i=1 p(πi) log(p(πi)) (0 log(0) is set 

to zero in accordance with its mathematical limit). Coming back 
to the example, S[P (X)] = −(2/5) log(2/5) − 3(1/5) log(1/5) =
1.3322. PE quantifies the temporal structural diversity of a time 
series. Technically speaking, the ordinal pattern probability distri-
bution P is obtained once we fix the order D and the lag τ . The 
PE estimation does not require the optimal reconstruction of the 
phase space that is necessary for estimating other quantifiers of 
chaotic signals. Consequently, D and τ are not usually selected fol-
lowing the methodologies often employed in a conventional phase 
space reconstruction (e.g., the first zero of the autocorrelation func-
tion, the first minimum of the average mutual information, and the 
false nearest neighbor algorithm). Taking into account that there 
are D! potential permutations for a D-dimensional vector, the con-
dition N � D!, with N the length of the time series, must be satis-
fied in order to obtain a reliable estimation of P [33]. For practical 
purposes, BP suggest in their seminal paper to estimate the fre-
quency of ordinal patterns with 3 ≤ D ≤ 7 and τ = 1 (consecutive 
points). However, it has been demonstrated that the analysis with 
lagged data points, i.e. τ ≥ 2, can be useful for reaching a better 
comprehension of the underlying dynamics [34–36]. Essentially, by 
changing the value of the lag τ , different time scales are being 
considered because this parameter physically corresponds to mul-
tiples of the sampling time of the signal under analysis. For further 
details about the BP methodology, we recommend [34,37,38]. It is 
common to normalize the PE, and therefore in this paper, a nor-
malized PE is used and is given by

HS = S[P ]/Smax = S[P ]/ log(D!) (1)

with Smax = log(D!) the value obtained from an equiprobable or-
dinal pattern probability distribution, i.e. P = {p(πi) = 1/D!, i =
1, . . . , D!}.

2.2. Testing nonlinear dynamics in time series with surrogate methods

The method of surrogate data, introduced by Theiler et al. [10], 
represents a cornerstone in nonlinear time series analysis. Briefly, 
a statistic sensitive to nonlinearities is estimated for the original 
univariate time series {xi}N

i=1 and for an ensemble of M generated 
surrogate time series, {x̂ j

i }N
i=1 with j = 1, . . . , M . Each surrogate 

(indexed with j) is a constrained realization of the original data 
that mimics its linear properties (autocorrelation function/power 
spectrum) while potential higher order correlations are random-
ized. When a statistically significant difference is found between 
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